A exploring infinity

maidsafe: A New Networking Paradigm

Introduction

The maidsafe network is a truly distributed network which is scalable and self-healing, providing a highly-secure, highly-reliable
method of data storage, retrieval and sharing. Data is located and relocated in such a way as to reduce bandwidth usage,
minimise load on individual nodes and identify defunct hardware on the network.

Perhaps one of the most important aspects of this distributed network is the ability for users to validate who they are and with
whom they are communicating. Self-authentication allows users to be free of corporate controls or risks regarding their data
protection. This is achieved by users storing random data only they know the key of and password protecting that data for later
re-validation; users essentially log into their own data.

Methodology

To achieve true full-distribution of the network, users are asked to donate a portion of their own disk space for use by the
network. This avoids the requirement for centralised servers. Interestingly in the maidsafe design, any disk space you provide
to the network is unlikely to store any of your own data.

System Layers

The maidsafe network can be considered as a three layer stack design as follows: 1) The Network Layer handles routing, NAT
traversal and churn; 2) The MAID Layer implements all algorithms relating to self-healing (additional

FileSystem churn control), ranking, perpetual data, self-encryption and most importantly self or anonymous
GUI | authentication; 3) The FileSystem Layer is the area of the system responsible for presenting the user
MAID with a filesystem from which to work with data. Initially this will be a read only file system and then be
Network added to with the likes of a VFS or possibly a FUSE. The FileSystem and (most of) the MAID Layers
are linked via the GUI.

System Building Blocks

maidsafe technology effectively splits the user's computer into a processing/access device and resource managing devices
referred to as clients and vaults respectively. The priority is that clients are simply access devices which can save and retrieve
resources including data, messages and certificates, etc.

An important issue with distributed systems is the ability of a management or policing layer to ensure fairness and stability
across the network. The maidsafe network utilises a ranking mechanism whereby vaults are continually assessed on their
reliability and availability. The “best” vaults are used to provide such a policing layer called the supernode network, and hence
vault churn is somewhat determinable and hence manageable. Clients are assigned addresses which are 8 bits longer than
vault addresses. These longer addresses are never stored in nodes' routing tables and cannot be considered as an option for
storage of [key,value] pairs, so client churn has negligible effect. Sets of three supernodes share responsibility for zones or
network segments broadly corresponding to geographical locations.

Network Processes

A vault joining the network bootstraps off a supernode by providing it with a suggested random Kademlia address. The
supernode alters the suggested address so as to achieve a balanced address space (hence optimising lookup iterations and
scalability), ensure address uniqueness, and to assign the node to the appropriate network segment as indicated by its IP
address. (As Kademlia uses XOR to define closeness of addresses, addresses can be assigned so that a group of nodes which
are mutually physically distant are close in terms of Kademlia addresses. This is important as [k,v] pairs are stored on groups of
nodes which are “Kademlia close” to each other, hence if these same nodes are physically distant then a large-scale partial
outage of the Internet will not cause all the duplicate [k,v] pairs to be unavailable. Henceforth, “close” means “Kademlia close”.)

The bootstrapping node then populates its routing table by doing a self-lookup after which the standard Kademlia bootstrapping
is complete. However, at this stage the node asks its closest neighbours for the three local supernodes' addresses and
registers with these supernodes. The three supernodes query the supernode network to receive the node's current ranking
data, then regularly check and log the node's availability/status (amending its rank as appropriate) until the node re-appears
elsewhere on the network (i.e. having left the network and bootstrapped again). Once a zone accrues an upper limit of nodes,
the supernodes will promote the “best” three nodes within the zone to supernode status and divide the zone in two. The
address space of the busy zone is bisected, and as the bootstrapping process ensures a balanced address space, the two new
zones will generally contain similar numbers of nodes.

A client or vault detecting an error on the system, its peers or itself generates an alert which is sent to its three supernodes. The
supernodes then resolve the problem and/or distribute the alert throughout the entire supernode network, from where it is
pushed out to all the clients on the network. Interestingly the supernode network now has an overlapping database which can
be used to store vault-specific information (such as rank, etc.)

Self-Encryption
An issue with today's encryption techniques is that a user’s key, biometric data or passphrase is used to encrypt every data

element, thereby exposing the key on every data element encrypted. In maidsafe, all data essentially encrypts itself; no
information about the owner is stored with the data.

When a file is stored, it is split into many chunks. Each chunk undergoes bit-swapping with the other chunks; and is then
encrypted using the hash of a different chunk as the encryption key. Each chunk is then renamed with the hash of its encrypted
content and compressed. The encrypted chunks can now be saved in various locations across the network. The locations of

© maidsafe.net Ltd. scalability@maidsafe.net



A exploring infinity

the chunks are stored in a “data map” (pre-encryption hashes and post-encryption hashes) which are concatenated to create a
“data atlas” which itself undergoes self-encryption to create another data map, which also creates encrypted chunks. This data
map (of the data atlas) can only be read by the original user once they are authenticated.

Perpetual Data

When a chunk is stored, it is not simply one copy sent to the network, but four copies which are stored in discrete network
zones. Each node hosting a particular chunk is given details of the three other “partner” nodes relating to this chunk, and
periodically checks the validity of these duplicate chunks. Initially, nodes will perform relatively frequent validity checks.
However, as “trust” is built up, the validity checks can significantly decrease in frequency.

If a node detects that a chunk copy has been deleted or (more importantly) corrupted, it will send an alert to the appropriate
supernode and will create a replacement copy of the chunk to be stored elsewhere on the network. The supernode will assess
the veracity of the alert and will act accordingly; i.e. if the alert is valid, it will “punish” (by demotion or quarantine) or warn the
affected node; or if the alert is false, it will punish the node which generated the false alert. Furthermore, because chunks'
names are the hash of their contents, nodes can easily check themselves for data corruption and send an alert to their
supernode about themselves. In this way, the network self-heals and has significant resistance to hackers and viruses.

Public Key Infrastructure
This also positively affects the PKI, as public keys are stored as encrypted chunks. This creates a fully-distributed, validated

and self-regulating PKI. Using standard PKI rules, privately-signed data is checked with the public key of the ID used. Hence it
is critical that the public keys are protected from malicious or accidental alteration or such a system would fail, as any cracker
could essentially replace the public key and pretend to be the ID.

Again, this is where the benefit of hashing is apparent. The hash of ID keys is the chunk name and also the ID associated with
the chunk (and key in the DHT). Chunk validity checking as described above, ensures the public key is valid. These
anonymous chunks can sign non-anonymous chunks happily and then only they can delete them. Signing is built into the chunk
name and cannot be retrospective, i.e. you could not create a key pair that creates the same resulting hash name, so fraud
would be computationally near impossible. As the chunks are well-formed and valid, users can be assured that the public key
they get is the key that was saved in that chunk and that it has not been tampered with. The maidsafe network also provides
anti-fraud mechanisms by having all users copy all public keys from vaults they communicate with. Thereby fraudsters would
generate system alerts by trying to replace this key. This gives the owner an opportunity to re-save the key onto the maidsafe
network (reducing the risk of Sybil attacks, and with signed ID boostrapping reducing the risk of Sparticus attacks).

Duplicate Prevention

While it may seem counter-intuitive, this method of storing data is likely to yield large savings of hard-drive space. When a file is
stored on the maidsafe network, the encrypted chunks are only stored if they do not already exist on the network. Two identical
files (irrespective of filenames) stored by different users will yield the same encrypted chunks, and so duplicates will not be
generated. Instead, the original four copies of each relevant chunk will now be listed on two users' data maps. Since only a
small percentage of the data stored on today's hard-drives is totally unique, the potential for reclaiming massive amounts of
storage space is high. Tests done at a local level back up this theory, as do tests done by EMC on a local duplicate removal
system (in a single LAN) which showed disk space savings of 10:1 to 25:1. A more recent study by datamonitor puts savings
from 4:1 to 89:1 with an average at enterprise level of 20:1 (i.e. a 95% saving), although only real world testing will yield a
definitive answer.

Anonymous Authentication
Another vital aspect of the maidsafe system is anonymous authentication. A user authenticates himself/herself via three unique

pieces of information; a username (U), PIN (P), and password (W). However, these three items are never transmitted or stored
on the network. To login, the client initially retrieves from the network the data which is named as the hash(hash(U) + hash(P)).
This data is then decrypted using U & P yielding a number (d) which was generated randomly when the user first created their
identity. Next, the client retrieves the data named as hash(hash(U) + hash(P) + hash(d)) which is the encrypted data atlas. ltis
decrypted using U & W and yields the locations of all of the data maps associated with the user. (pbkdf2 is used to further
encrypt the random number (d) in the ID packet. This is extended by a known calculable value (time since epoch in our case) to
ensure even the ID hash is always different.) Thus the network has no need of servers maintaining lists of sensitive security
details, and the user's anonymity is assured.

Future Trends

The future of this type of technology is a bright one. A self-managed digital ID which can spawn as many IDs as the system or
the user decides it should (SAH512 hashing allows for 1.34x10'* results which equates to more available IDs than atoms in the
universe) will create the potential for many interesting and innovative things such as: Digital Coin (a digital replacement for
currency), Digitally-Validated Voting, Solid State Stand Alone vaults (low power, 'plug and play' devices with low processing
ability attached to the network could expand its data-storage capacity automatically and easily), and Read Only Operating
Systems (which would be immune to viral attacks).

Lessons Learned

Over the last few years, the maidsafe team have learned several lessons including: there is no “one size fits all” in software
development choices of language, code review works very well, there's no room for ego in an innovation based organisation, if
it's logical it will work, addons and additions not inherent in the design don't scale well (i.e. maidsafe technology inherently backs
up data and allows sharing, not as an addon but as a logical design step). Above all, belief and determination with the right
team can achieve what would appear to many to be miracles.

31AR4



