Erlang

Productivity and Performance

My Perspective

= Using Erlang for 3+ years on industrial projects

= Amazon for 5 years
— working on tier-1 stateful distributed systems

Valve LLC for 3 years

— did most of the core backend for www.steampowered.com
(~20 million registered users, 1.88 million concurrent users)

— in C++, which drove me to look for Erlang

Before that: designed/wrote video-games

http://www.steampowered.com/

Overview

= Introduction To Erlang
= Productivity

= Performance

= Erlang on Multi-Core

Introduction To Erlang

= Motivation
= The Big ldea
= Primary Mechanisms

Motivation for Erlang

= Make it easier to build extremely robust, high-end
telecoms switches

= Biggest avallability issue is software defects

= Biggest productivity issue is complexity of concurrent
Interactions

— large nested state machines

— usual distributed-system issues
(e.g. power-set of partial-failure modes)

‘ ERICSSON 2 \

Nine-9’'s
Availability

31 milliseconds
@ downtime per year
D

’ Existing transit circuit-switched
network needed modernization

* Rapid traffic growth from new and
existing services

’ Increase capacity and reduce cost
through evolution to new muilti-service
communication system capable of
carrying all telephony, data and multi-
media services

BT, UK chooses Ericsson and ENGINE Integral for migration of it’s transit
telephony network to the world's largest Telephony over ATM network

? Pa'trerdi
lrleg'd in hybrid
cuiiglllimta >50% of BT transit
netwaork - 23 nodes across UK

:wmm

' 14 nades carrying live traffic
September 2002 aut of planned 23
before end of 202 (according to
time plan)

" 99,9099900% availability

' 30-40 Million calls per week & node

' World 's largest Telephony over ATM
network

' Best Supplier of the year, 2000

The Big Idea
A New Internal Architecture

Applications composed of isolated, loosely-coupled micro-
services, communicating via asynchronous message-passing

Fault-tolerance via “supervisors”:
— micro-services that monitor and restart other micro-services
— hierarchical escalating restart (recovery-oriented computing)

Micro-services and message-passing should be so cheap that
they become the default abstraction
— thousands of ‘active objects’ / ‘actors’

Linear control-flow, even when doing 10 in thousands of processes
— VM implements scheduler, hides details of async. IO

Avoid features that break robustness and distribution

— mutable memory-shared state, conventional mutexes,
synchronous interaction between processes

Primary Mechanisms

= Many isolated ‘erlang processes’
— one-to-one concurrency with problem domain
— reasonable to have hundreds-of-thousands of processes
— VM is a single OS process, perhaps one OS thread per core

= Processes are kill-safe and crash-safe
— fail-fast error handling

= Processes can monitor each other and receive an
asynchronous signal or a message when another process
exits

= Each process has a private mailbox
— message-delivery does not interrupt receiver process
— default FIFO ordering
— can ‘selectively receive’ (consume out of order) via pattern-
matching

Language Overview

= Syntax inspired by prolog
— but different semantics (simple linear control-flow)

= Pervasive pattern-matching

= Small set of types; atom, number, list, tuple, binary, closure
= Strong, dynamic (runtime) type-checking

= No explicit pointers/references

= Immutable data values, possibly sharing internal structure
— pure-functional algorithms required for data-structures

= Bind-once variables (via pattern-matching)
— no assignment operator

= No conventional OO support
— but processes are ‘true’ objects (see Alan Kay’s OOPSLA 97 keynote)

= Constant-space tail-calls
— Looping done with recursion or high-order functions, as in Scheme

Language Overview continued

= ‘Mutable state’ provided by subsystems with ‘service API’
— copy data on both read and write
— ETS, Mnesia, Berkeley DB, ...

= Sophisticated runtime tracing features
= Live code loading/replacement

= Some cruft
— broken lexical scope
— flat module namespace
— relatively poor/expensive string handling
— rather ad-hoc libraries
— awkward conditional control-flow (if/case)
— performance issues (see later)

= QOpen-source, superbly maintained by Ericsson
— no external committer rights

= Other flavors
— LFE (Lisp Flavored Erlang)
— Reia (“script language”, allows rebinding of variables)

10

Quick Overview of Erlang Syntax

-module(math).
-export([fac/1]).

fac(N) when N > 0 -> N * fac(N-1);
fac(0) -> 1.

> math:fac(25).
15511210043330985984000000

Append

% append([1,2,3], [4,5]) = [1,2,3,4,5]

%

% Same as Listl ++ List2

% (copies Listl, shares structure with List2)

append([H | T], Li1st2) ->
[H | append(T, Li1st2)];

append([], L1st2) ->
List?2.

12

Binary Search Tree

% A node is {Key, value, LeftSubtree, RightSubtree}
% or nil

lTookup(Key, {Key, val, _, _}) ->
{ok, val};

Tookup(Key, {Nodekey, val, L, R}) when Key < NodeKey ->
Tookup(Key, L);

lookup(Key, {NodeKey, val, L, R}) ->
lTookup(Key, R);

lookup(Key, nil) ->
not_found.

13

High-Order Functions / Closures

> Adder = fun(Increment) ->
fun(N) -> N + Increment end

end.
#Fun

> G = Adder(10).
#Fun

> G(7).
17

Concurrency

% Create a process
Pid = spawn(fun() ->
do(),
things ()
end) .

% Send a message to a process

Pid ! {my_msg, with, [“Arbitrary”, Structure]}.

15

Selectively receive a message

% All receive-patterns are tested against first message
% in mailbox, then against second message, and so on.

receive
{my_msg, _, [FirstElem, _]1} ->

% some actions (presumably using FirstElem);
. Snip any number of patterns/actions ..

AnyMsg ->
% more actions
after
TimeoutMillisecs ->
% .. actions
end.

16

Create and monitor a process

% Choose to convert async. ‘exit’ signals to messages
% (only supervisors/coordinators should do this)

process_flag(trap_exit, true),

% ‘“links’ are bi-directional
% (there is a uni-directional variant)

Pid = spawn_link(fun() -> ... end),

receive
{’EXIT’, Pi1d, Reason} ->
% actions
end

17

“Behaviors”

= Remove the boilerplate from common patterns

= gen_server basic micro-service

= gen_event simple publish/subscribe

= gen_fsm convenient state machines

= supervisor monitor and restart other processes
= gen_leader process pool with leader election

= plain_fsm allows nested state machines

= Good overview doc. : OTP Design Principles

18

http://www.cs.chalmers.se/~hanssv/leader_election/
http://erlang.org/pipermail/erlang-questions/2004-February/011403.html
http://www.eros-os.org/pipermail/e-lang/2006-June/011325.html
http://www.erlang.org/doc/design_principles/part_frame.html

Other Patterns

= GProc : Extended Process Reqgistry
— “find the right process”
— Indexed meta-data for processes, with automatic cleanup
— ‘references/pointers’ in a loosely-coupled world

= QOther Ulf Wiger code

= ERESYE Erlang Expert System Engine and Linda-style
tuple-space

= Erlang Questions mailing list archives

19

http://svn.ulf.wiger.net/gproc/
http://ulf.wiger.net/weblog/my-erlang-projects/
http://www.erlang-consulting.com/erlangworkshop05/ERESYE_Paper.pdf
Copy (2) of Erlang Productivity and Performance.ppt

Productivity

Productivity
For which problem-domain?

= Erlang is excellent for industrial-scale systems with
certain goals
— Fault-tolerant
— Soft real-time
— Highly concurrent

— Distributed (from wire-level protocols to high-level
choreography)

= Currently poor for
— Intensive numerical computation
— Mutation-heavy computation
— Most micro-benchmarks

21

Dimensions of Productivity

= Expressivity of syntax

= Expressivity of abstractions

= Convenience of error-handling, resource management
= Breadth and quality of library support

= Ease of interfacing to libraries in other languages

= Reliability, maturity

= Support for debugging

= Support for maintenance of existing code/systems

= Support for operations of running systems

= Performance (how much optimization is required?)

22

Dimensions of Productivity

= EXxpressivity of syntax
— pattern-matching is great
— ‘bit-syntax’ and ‘binaries’ are great for implementing low-level
protocols

= EXpressivity of abstractions
— processes, message-passing, links are a huge win
— can directly model the concurrency of the problem-domain

— avoids ‘gimbal lock’ of conventional shared-memory
concurrency

= Convenience of error-handling, resource management

— Good exception support (try/catch/after)

— BUT hard-killing a process bypasses any catch/after clauses
= other processes should monitor and do clean-up

— Any ‘ports’ owned by the process (e.g. sockets, files) are

always closed when it exits
= mechanism is painful to customize - requires C code

23

Dimensions of Productivity cont.

= Breadth and quality of libraries

— good for telecoms, otherwise relatively ad-hoc / poor. Improving
slowly.

= Ease of interfacing to libraries in other languages
— somewhat painful painful

— philosophy is good: treat all external entities as processes;
send/receive messages and assume they may crash

— have to wrap APIs in message-passing interface
= Reliability/maturity
— world class
= Support for debugging
— excellent : trace facilities, remote shells, visibility tools
= Support for maintenance of existing code/systems
— excellent : hot code-loading, clean concentration of state for ‘upgrade’
= Support for operations of running systems
— excellent : remote shells, visibility tools

= Performance (how much optimization is required?)

24

More Information

- "Four-fold increase in productivity and quality” (2001) http://citeseer.ist.psu.edu/wigerO1fourfold.html

- “Concurrency Oriented Programming In Erlang”
http://www.sics.se/~joe/talks/lI2_2002.pdf

- “Erlang Rationale” http://www.trapexit.org/forum/viewtopic.php?p=44172

. "History of Erlang"
http://www.cs.chalmers.se/Cs/Grundutb/Kurser/ppxt/HT2007/general/lanqguages/armstrong-
erlang history.pdf

. "World-class product certification using Erlang” (2002)
http://citeseer.ist.psu.edu/old/wiger0O2worldclass.html

. "Troubleshooting a large Erlang system" (2004)
http://www.erlang.se/workshop/2004/cronqvist.pdf

. "Verification of Distributed Erlang Programs using Testing, Model Checking and Theorem Proving*
http://www.cs.chalmers.se/~hanssv/doc/PhDThesis.pdf

: "AXD 301 A new generation ATM switching system" (1998)
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.5674

25

http://citeseer.ist.psu.edu/wiger01fourfold.html
http://www.sics.se/~joe/talks/ll2_2002.pdf
http://www.trapexit.org/forum/viewtopic.php?p=44172
http://www.cs.chalmers.se/Cs/Grundutb/Kurser/ppxt/HT2007/general/languages/armstrong-erlang_history.pdf
http://www.cs.chalmers.se/Cs/Grundutb/Kurser/ppxt/HT2007/general/languages/armstrong-erlang_history.pdf
http://www.cs.chalmers.se/Cs/Grundutb/Kurser/ppxt/HT2007/general/languages/armstrong-erlang_history.pdf
http://citeseer.ist.psu.edu/old/wiger02worldclass.html
http://www.erlang.se/workshop/2004/cronqvist.pdf
http://www.cs.chalmers.se/~hanssv/doc/PhDThesis.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.5674

Performance

Current Performance Issues

= Dynamic (runtime) type checking

= Immutable data-values
— 0O(1) factors become O(Ig N) and generate garbage

= “Public” mutable state is copied on both read and write
— and any sharing of sub-structure is lost

= Byte-code based VM, relatively few compiler
optimizations
— constant factors are relatively high compared to C, Java
— native-code compiler improves things but is rarely used

= Copy on send, and any sharing of sub-structure is lost

= “Message-passing API” to third-party low-level libraries,
may incur marshalling / copying

27

Performance Strengths

= (Garbage-collection is per-process (and generational)
— root-set and live-set are usually tiny
— likely to be fine-grain, non-blocking

= Transient processes with pre-sized heaps can often
avoid g.c. entirely

= Large binary data is reference-counted
= ETS s not scanned by garbage collector at all

= See Erlang Efficiency Guide

28

http://erlang.org/doc/efficiency_guide/part_frame.html

Support Material

Industry Case Study

A research team worked with Motorola Telecoms to re-
Implement two existing C++ components of a

production mobile-phone system in pure Erlang, and a
mixture of Erlang/C.

http://www.erlang.se/euc/06/proceedings/1600Nystrom.ppt

30

http://www.erlang.se/euc/06/proceedings/1600Nystrom.ppt

Erlang vs C++
Motorola Telecoms

= Code size:
1. Erlang version 1/7 the size of the C++ original (398 lines vs. 3101),
2. Erlang version 1/3 the size of the C++ original (4,882 lines vs.
14,900)
= Throughput
— Erlang version 2x throughput of the existing C++ version
(before QoS started to degrade in both versions)

= Latency
— Erlang version 3x faster (roundtrip times) than the C++ version
= Availability
- F(Ilang version available throughout repeated induced hardware
ailures

— No data for C++ version

= Resilience
— Erlang version never failed even at overload of 25,000 requests per
second.
— C++ version failed before reaching 1,000 requests per second.

31

Reslience

@ Erlang A B C++ A O Pure Erlang A

X axis is load (queries per second)

Y axis is throughput (queries per second)

32

