

Containers: Disruptive Technology

- Implications for Shipping
 - New Ships, Ports, Unions
- Implications for Hotnets
 - New Data Center Designs
 - Power/Networking Trade-offs
 - Cost Models: Expense vs. Capital
 - Apps: Embarrassingly Distributed
 - Restriction on *Embarrassingly Parallel*
 - Machine Models
 - Distributed Parallel Cluster ⊆ Parallel Cluster

Related Work

- <u>http://en.wikipedia.org/wiki/Data_center</u>
 - A data center can occupy one room of a building...
 - Servers differ greatly in size from <u>1U servers</u> to large ... silos
 - Very large data centers may use <u>shipping</u> <u>containers</u>...^[2]

Juniper

The switch is on to

comprehensive

notwork coourity

220 containers in one PoP → 220 in 220 PoPs

Walking the talk: Microsoft builds first major container-based data center

Vendor plans to install up to 220 server-filled shipping containers at Chicago facility

By Eric Lai Comments 🖗 <u>1</u> Recon	ımended 合 <u>137</u> Share 🕂
---------------------------------------	------------------------------

April 7, 2008 (Computerworld) <u>Google Inc.</u> and <u>Sun Microsystems Inc.</u> both may claim to have pioneered the "data center in a box" concept, but <u>Microsoft Corp.</u> appears to be the first company that is rolling out container-based systems in a major way inside one of its data centers.

Mega vs. Micro Data Centers (DCs)

POPs	Cores/ POP	Hardware/ POP	Co-located With/Near
1	1,000,000	1000 containers	Mega
10	100,000	100 containers	Data Center
100	10,000	10 containers	Fiber Hotel/
1,000	1,000	1 container	Power Substation
10,000	100	1 rack	Central Office
100,000	10	1 mini-tower	סרס
1,000,000	1	embedded	

Data Center (DC) Cost Models: Power vs. Networking

- Big ticket items: Contents, Power, Networking
 - Currently, cost of DC (excluding contents) \approx cost of contents
 - Moore's Law: more appropriate for contents than DC
 - Eventually, cost of DC >> cost of contents
- Power: costs more than networking
 - Opportunity: Power
- Self-Serving Recommendation:
 - Save big \$\$ on power
 - By investing in what we do
 - Networking
 - Redesigning Apps (for geo-diversity)

Cost Models: Expense vs. Capital

- Wide Agreement: Cost dominated by power
 Less Agreement: Expense or Capital?
- Can we save \$\$ by putting clouds to sleep?
 Yes, but only a little expense
- Big Opportunity: Capital
 - Capital: Batteries, Generators, Power Distribution
 - Worst case forecast (capital) >> Actual usage (expense)

Variant on Buffet Putting clouds to sleep: Like stripping weight on last seat • Saves a little expense (fuel),

But better to sell last seat (even at a steep discount)

Use it or lose it (more applicable for sunk capital than expense)

Risk Management \rightarrow Micro

- Risky and expensive
 - To put all our eggs in one basket (Mark Twain)
- Mega DC \rightarrow Redundancy Mechanisms
 - Power: Batteries, Generators, Diesel Fuel
 - Over 20% of DC costs is in power redundancy
 - Networking: Protection (SONET)
- Micro Alternative: Geo-Redundancy
 - *N+1* Redundancy: More attractive for large *N*
 - Geo-Redundancy: Not appropriate for all apps
 - But many apps are Embarrassingly Distributed

Cost Model Recap

- Power costs dominate everything else
 - Save \$\$ on power
 - By investing in what we do
 - Networking
 - Re-designing apps (for geo-diversity)
- Capital dominates expense
 - Opportunity: Risk Management (Geo-Diversity)
 - *N*+1 Redundancy: More attractive for large *N*
 - Cheaper than Batteries & Generators

Economies of Scale: Mega/Micro Neutral

- Large cloud service providers
 - Amazon, Google, Microsoft, Yahoo, etc.
- Clouds enjoy economies of scale
 - Networking & Power:
 - Large Purchases → Favorable Terms
 - Though sometimes, Demand >> Supply \rightarrow Unfavorable Terms
- Clouds pass savings on to consumers
- Myth: Economies of Scale \rightarrow Mega
 - Large firms (Walmart) enjoy favorable terms because they are large
 - Independent of mega vs. micro (PoPs/Stores)
 - Economies of scale favor large volume (sales), not large PoPs

Micro is Better: Both Capital & Expense

		Mega (DC)	Micro (Condos)
Specs	Servers	54k	54k (= 48 servers/condo * 1125 Condos)
	Power (Peak)	13.5 MW	13.5MW (= 250 Watts/server * 54k servers = 12 KW/condo * 1125 Condos)

Clouds \rightarrow Condos \rightarrow Containers

- Whenever we see a crazy idea
 - Within 2x of current practice,
 - Something is wrong
- Let's go pick some low hanging fruit

Though maybe not as crazy as we thought...
 – Changes are coming

Container Abstraction

- Modular Data Center (≈2k Servers/Container)
- Cheap Units: millions, not billions
 Affordable, even by universities
- Just-in-Time:
 - Easy to build, provision, move, buy/sell, operate
- Sealed Boxcar: No Serviceable Parts
 - No Humans Inside
 - No room for people, too hot, noisy, unsafe (no fire exits)
 - Not OSHA Compliant
- Self-contained unit with everything but
 - Power: 480V
 - External Network: 1 Gbps
 - Cooling: Chilled Water

Containers are a Disruptive Technology: Implication for CS Theory/Algorithms

- Abstract Machine Model
 - Distributed Parallel Cluster \subseteq Parallel Cluster
- Distributed Container Farm
 - Parallel Cluster (with Boundaries)
 - Better communication within containers
 - Than across containers (wide area network)
- Challenge:
 - Find appropriate apps (not for everything)
 - Apps that fit within boundaries
 - Or distribute nicely across them (Embarrassingly Distributed)
- Embarrassingly Distributed:
 - Stronger Condition than Embarrassingly Parallel
 - Map Reduce, Sort, Scatter Gather

Embarrassingly Distributed Apps

- Currently distributed:
 - voice mail, telephony (Skype), P2P file sharing (Napster), multicast, eBay, online games (Xbox Live), grid computing
- Obvious candidates:
 - spam filtering & email (Hotmail), backup, grep (simple but common forms of searching through a large corpus)
- Less obvious candidates:
 - map reduce computations (in the most general case), sort (in the most general case), social networking (Facebook)

Obvious Candidate: Email on the Edge

- Hotmail: Four Activities
 - Incoming Email Anti-malware and Routing
 - Email Storage Management
 - Users and Administrator Service
 - Outgoing Email Service
- All are embarrassingly distributed
 - Useful Option: Distribute some and centralize others
 - Routing/Load-Balancing/Blocking: Deploy near user
 - Edge Blocks (email) & Call Gapping (telephony)
 - If traffic will be blocked,
 - Better to deploy blocks near source (to save transport)

Networking

- DC \rightarrow WAN \rightarrow Peering \rightarrow Last Mile
- Mega Build
 - Build global dedicated backbone between DCs with rich peering (and plenty of redundancy/reliability)
 - Relatively complex, high cost, but high control of quality
- Micro Buy
 - Buy transit from network service providers (CDN)
 - Vastly simpler and lower cost, but with reduced control of quality; quality via redundancy and global load balancing
 - Closer to user: latency, edge blocking options

Fragmentation Tax

(For Embarrassingly Distributed Apps)

- Split a mega data center into K micro data centers
 - Redundancy Tax: Unit cost $(U \ge 1)$ = Capital in mega/micro
 - Fragmentation Tax (Capital)
- With global load balancing: No Fragmentation Tax
- Without global load balancing, ... it depends:

m(U-1) $(\sqrt{M}ma)$ Mean traffic rate Unit cost ≥ 1 Traffic Capital: Mega/Micro **SLA Burstiness Redundancy Tax**

-U > 1: Unit costs dominate (for large m) \rightarrow Micro cheaper

- U=1: Mega cheaper with fragmentation tax scaling slowly

Redundancy tax dominates fragmentation tax

SLA

Current Status: Long on Mega

- Industry is investing billions in mega
 - -Lots of new mega Data Centers
 - –Long-Term Assets/Liabilities
 - Depreciating over 15 years
- Bottom line:
 - The industry would do well to consider
 - The micro alternative
 - Geo-Diversity >> Batteries & Generators
 - Fragmentation Tax (sublinear) << Redundancy Tax (linear)</p>
 - Just-in-Time Options:
 - Easy to build, provision, move, buy/sell, operate
 - Risk (hedge the long position on mega)

is aggressively adopting

BACKUP

3 >> 10 ???

- Cost Drivers:
 - Market Segmentation: Business vs. Consumer
 - Businesses pay more because of willingness to pay
 - Like hotels, airplanes, telephones, etc.
 - 3 cents/KW >> 10 cents/KW
 - Capital (not Expense): cents >> 10 cents (???)
 - Costs are dominated by backup systems, transformers, custom power distribution networks, etc.
- Opportunities:
 - Just-in-Time options to ramp up/down investments quickly

Large Data Centers (DCs): Analogous to Large Conferences

- A small (low budget) workshop can be held in a spare room in many universities,
 - but costs escalate rapidly for larger meetings that require hotels and convention centers.
- There are thousands of places where the current infrastructure can accommodate a workshop or two,
 - But no place where the current infrastructure can accommodate the Olympics
 - Without a significant capital investment.
- Meetings encounter diseconomies of scale when they outgrow the capabilities of off-the-shelf venues.

So too, costs escalate for mega DC

- For example, if mega data center (DC) consumes 20MW of power at peak from a given power grid,
 - that grid may be unable or unwilling to sell another 20MW to the same data center operator.
- In general, new mega DC → significant capital investments
 Building, power, networking
- Micro alternative \rightarrow More opportunity for reuse
 - Exploit overbuild in power grid and networking fabric.
- Many places can handle a container (power substations)
 - but no place for lots of containers (without significant investment)
- Data centers encounter diseconomies of scale
 - When they become so large that they require
 - Significant investment in infrastructure.

Just-In-Time

- Micro: options to buy/sell just-in-time
- Smooth investments over time:
 Mega (\$1B/year) → Micro (\$20M/week)
- Lead times on new orders:
 - Mega DC: 1 year
 - Micro: Container production line (approx 1/week)
- Options to unwind investments

– Micro >> Mega (15 year depreciation)

Just-in-Time Options: Valuable under Uncertainty

- Long-term demand is far from flat and certain
 - Demand for cloud services will probably increase,
 - But anything could happen over next 15 years
- Short-term demand is far from flat and certain
 - Power usage depends on many factors including time of day, day of week, seasonality, economic booms and busts