Saturday, October 17, 2009

Jeff Dean of Google did an excellent keynote talk at LADIS 2009.  Jeff’s talk is up at: and my notes follow:

·         A data center wide storage hierarchy:

o   Server:

§  DRAM: 16GB, 100ns, 20GB/s

§  Disk: 2TB, 10ms, 200MB/s

o   Rack:

§  DRAM: 1TB, 300us, 100MB/s

§  Disk: 160TB, 11ms, 100MB/s

o   Aggregate Switch:

§  DRAM: 30TB, 500us, 10MB/s

§  Disk: 4.8PB, 12ms, 10MB/s

·         Failure Inevitable:

o   Disk MTBF: 1 to 5%

o   Servers: 2 to 4%

·         Excellent set of distributed systems rules of thumb:

o   L1 cache reference 0.5 ns

o   Branch mispredict 5 ns

o   L2 cache reference 7 ns

o   Mutex lock/unlock 25 ns

o   Main memory reference 100 ns

o   Compress 1K bytes with Zippy 3,000 ns

o   Send 2K bytes over 1 Gbps network 20,000 ns

o   Read 1 MB sequentially from memory 250,000 ns

o   Round trip within same datacenter 500,000 ns

o   Disk seek 10,000,000 ns

o   Read 1 MB sequentially from disk 20,000,000 ns

o   Send packet CA->Netherlands->CA 150,000,000 ns

·         Typical first year for a new cluster:

o   ~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)

o   ~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)

o   ~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)

o   ~1 network rewiring (rolling ~5% of machines down over 2-day span)

o   ~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

o   ~5 racks go wonky (40-80 machines see 50% packetloss)

o   ~8 network maintenances (4 might cause ~30-minute random connectivity losses)

o   ~12 router reloads (takes out DNS and external vips for a couple minutes)

o   ~3 router failures (have to immediately pull traffic for an hour)

o   ~dozens of minor 30-second blips for dns

o   ~1000 individual machine failures

o   ~thousands of hard drive failures

o   slow disks, bad memory, misconfigured machines, flaky machines, etc.

·         GFS Usage at Google:

o   200+ clusters

o   Many clusters of over 1000 machines

o   4+ PB clients

o   40 GB/s read/write laod

·         Map Reduce Usage at Google: 3.5m jobs/year averaging 488 machines each & taking ~8 min

·         Big Table Usage at Google: 500 clusters with largest having 70PB, 30+ GB/s I/O

·         Working on next generation GFS system called Colossus

·         Metadata management for Colossus in BigTable

·         Working on next generation Big Table system called Spanner

o   Similar to BigTable in that Spanner has tables, families, groups, coprocessors, etc.

o   But has hierarchical directories rather than rows, fine-grained replication (ad directory level), ACLs

o   Supports both weak and strong data consistency across data centers

o   Strong consistency implemented using Paxos across replicas

o   Supports distributed transactions across directories/machines

o   Much more automated operation

§  Auto data movement and replicas on basis of computation, usage patterns, and failures

o   Spanner design goals: 10^6 to 10^7 machines, 10^13 directories, 10^18 storage, 10^3 to 10^4 locations over long distances

o   Users specify require latency and replication factor and location


I did the keynote at last year’s LADIS:



James Hamilton



b: /


Saturday, October 17, 2009 6:06:24 AM (Pacific Standard Time, UTC-08:00)  #    Comments [4] - Trackback
 Wednesday, October 14, 2009

I love Solid State Disks and have written about them extensively:

And, being a lover of SSD, I know they are a win in many situations including power savings.  However, try as I might (and I have tried hard), I can’t find a way to justify using SSDs on power savings alone. In When SSDs Make Sense in Server Applications I walked through where flash SSDs are a clear win. They are great for replacing disks in VERY high IOPS workloads. They are great for workloads that can’t go do disk and must entirely be held by main-memory caches.  In this usage mode, SSDs can allow the data that was previously had to be memory resident to be moved to SSD. This can be a huge win in that memory is very power intensive and, as much as memory prices have fallen, it’s still expensive relative to disk and flash.


In this recently released article, MySpace Replaces all Server Hard Disks with Flash Drives, it was announced that MySpace has completely stopped using hard disks. The article said “MySpace said the solid state storage uses less than 1% of the power and cooling costs that their previous hard drive-based server infrastructure had and that they were able to remove all of their server racks because the ioDrives are embedded directly into even its smallest servers.” Presumably they meant “remove all of the storage racks” rather than “remove all the server racks.”


I totally believe that MySpace can and should move some content that currently must live in memory and shift it out to SSDs and I like the savings that will come from doing this. No debate.  I fully expect MySpace have some workloads that drive incredibly high IOPS rates and these can be replaced by SSDs.  But in every company I’ve ever worked or visited, the vast majority of the persistent disk resident data is cold.  Security and audit logs, backups, boot disks, archival copies, debugging information, rarely accessed large objects. Putting cold data without extremely aggressive access time SLAs on flash just doesn’t make sense.  These data are capacity bound rather than IOPS bound and flash is an expensive way to get capacity.


The argument made in the article is that power savings of flash over SSD justify the cost per GB delta. I can’t make that math even get close to working. In Annual Fully Burdened Cost of Power we looked at the cost of fully provisioned power and found that if we include power distribution costs, cooling costs, and power, power costs $2.12 per watt per year. Given that a commodity disk (where cold data belongs) consumes 6 to 10w disk each and can store well over a TB, this  math simply can’t be made to work.  I have come across folks that think the power savings justify the technology change even for cold data but I’ve never seen a case where the assertion stood the test of scrutiny.


SSDs are wonderful for many applications and I would certainly replace some disks with SSDs but replacing ALL disks doesn’t make sense in the workload mixes found in most data centers.   In this case, I suspect it was a communication error and MySpace has not really replaced all of their disk with SSDs.


Thanks to Tom Klienpeter who sent this one my way.




James Hamilton



b: /


Wednesday, October 14, 2009 11:30:12 AM (Pacific Standard Time, UTC-08:00)  #    Comments [2] - Trackback
 Wednesday, October 07, 2009

In past posts such as Web Search Using Small Cores I’ve said “Atom is a wonderful processor but current memory managers on Atom boards don’t support Error Correcting Codes (ECC) nor greater than 4 gigabytes of memory. I would love to use Atom in server designs but all the data I’ve gathered argues strongly that no server workload should be run without ECC.”  And, in Linux/Apache on ARM Processors I said “unlike Intel Atom based servers, this ARM-based solution has the full ECC Memory support we want in server applications (actually you really want ECC in all applications from embedded through client to servers


An excellent paper was just released that puts hard data behind this point and shows conclusively that ECC is absolutely needed. In DRAM Errors in the Wild: A Large Scale Field Study, Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber show conclusively that you really do need ECC memory in server applications. Wolf was also an author of the excellent Power Provisioning in a Warehouse-Sized Computer that I mentioned in my blog post Slides From Conference on Innovative Data Systems Research where the authors described a technique to over-sub subscribe data center power.


I continue to believe that client systems should also be running ECC and strongly suspect that a great many kernel and device driver failures are actually the result of memory fault. We don’t have the data to prove it conclusively from a client population but I’ve long suspected that the single most effective way for Windows to reduce their blue screen rate would be to require ECC as a required feature for Windows Hardware Certification.


Returning to servers, in Kathy Yelick’s ISCA 2009 keynote, she showed a graph that showed ECC recovery rates (very common) and noted that the recovery times are substantial and the increased latency of correction is substantially slowing the computation (ISCA 2009 Keynote I: How to Waste a Parallel Computer – Kathy Yelick).

This more recent data further supports Kathy’s point, includes wonderfully detailed analysis and concludes with:


·         Conclusion 1: We found the incidence of memory errors and the range of error rates across different DIMMs to be much higher than previously reported. About a third of machines and over 8% of DIMMs in our fleet saw at least one correctable error per year. Our per-DIMM rates of correctable errors translate to an average of 25,000–75,000 FIT (failures in time per billion hours of operation) per Mbit and a median FIT range of 778 –25,000 per Mbit (median for DIMMs with errors), while previous studies report 200-5,000 FIT per Mbit. The number of correctable errors per DIMM is highly variable, with some DIMMs experiencing a huge number of errors, compared to others. The annual incidence of uncorrectable errors was 1.3% per machine and 0.22% per DIMM. The conclusion we draw is that error correcting codes are crucial for reducing the large number of memory errors to a manageable number of uncorrectable errors. In fact, we found that platforms with more powerful error codes (chipkill versus SECDED) were able to reduce uncorrectable error rates by a factor of 4–10 over the less powerful codes. Nonetheless, the remaining incidence of 0.22% per DIMM per year makes a crash-tolerant application layer indispensable for large-scale server farms.

·         Conclusion 2: Memory errors are strongly correlated. We observe strong correlations among correctable errors within the same DIMM. A DIMM that sees a correctable error is 13–228 times more likely to see another correctable error in the same month, compared to a DIMM that has not seen errors. There are also correlations between errors at time scales longer than a month. The autocorrelation function of the number of correctable errors per month shows significant levels of correlation up to 7 months. We also observe strong correlations between correctable errors and uncorrectable errors. In 70-80% of the cases an uncorrectable error is preceded by a correctable error in the same month or the previous month, and the presence of a correctable error increases the probability of an uncorrectable error by factors between 9–400. Still, the absolute probabilities of observing an uncorrectable error following a correctable error are relatively small, between 0.1–2.3% per month, so replacing a DIMM solely based on the presence of correctable errors would be attractive only in environments where the cost of downtime is high enough to outweigh the cost of the expected high rate of false positives.

·         Conclusion 3: The incidence of CEs increases with age, while the incidence of UEs decreases with age (due to replacements). Given that DRAM DIMMs are devices without any mechanical components, unlike for example hard drives, we see a surprisingly strong and early effect of age on error rates. For all DIMM types we studied, aging in the form of increased CE rates sets in after only 10–18 months in the field. On the other hand, the rate of incidence of uncorrectable errors continuously declines starting at an early age, most likely because DIMMs with UEs are replaced (survival of the fittest).

·         Conclusion 4: There is no evidence that newer generation DIMMs have worse error behavior. There has been much concern that advancing densities in DRAM technology will lead to higher rates of memory errors in future generations of DIMMs. We study DIMMs in six different platforms, which were introduced over a period of several years, and observe no evidence that CE rates increase with newer generations. In fact, the DIMMs used in the three most recent platforms exhibit lower CE rates, than the two older platforms, despite generally higher DIMM capacities. This indicates that improvements in technology are able to keep up with adversarial trends in DIMM scaling.

·         Conclusion 5: Within the range of temperatures our production systems experience in the field, temperature has a surprisingly low effect on memory errors. Temperature is well known to increase error rates. In fact, artificially increasing the temperature is a commonly used tool for accelerating error rates in lab studies. Interestingly, we find that differences in temperature in the range they arise naturally in our fleet’s operation (a difference of around 20C between the 1st and 9th temperature decile) seem to have a marginal impact on the incidence of memory errors, when controlling for other factors, such as utilization.

·         Conclusion 6: Error rates are strongly correlated with utilization.

·         Conclusion 7: Error rates are unlikely to be dominated by soft errors. We observe that CE rates are highly correlated with system utilization, even when isolating utilization effects from the effects of temperature. In systems that do not use memory scrubbers this observation might simply reflect a higher detection rate of errors. In systems with  memory scrubbers, this observations leads us to the conclusion that a significant fraction of errors is likely due to mechanism other than soft errors, such as hard errors or errors induced on the data path. The reason is that in systems with memory scrubbers the reported rate of soft errors should not depend on utilization levels in the system. Each soft error will eventually be detected (either when the bit is accessed by an application or by the scrubber), corrected and reported. Another observation that supports Conclusion 7 is the strong correlation between errors in the same DIMM. Events that cause soft errors, such as cosmic radiation, are expected to happen randomly over time and not in correlation. Conclusion 7 is an interesting observation, since much previous work has assumed that soft errors are the dominating error mode in DRAM. Some earlier work estimates hard errors to be orders of magnitude less common than soft errors and to make up about 2% of all errors. Conclusion 7 might also explain the significantly higher rates of memory errors we observe compared to previous studies.


Based upon this data and others, I recommend against non-ECC servers. Read the full paper at: DRAM Errors in the Wild: A Large Scale Field Study. Thanks for Cary Roberts for pointing me to this paper.




James Hamilton



b: /


Wednesday, October 07, 2009 5:33:50 AM (Pacific Standard Time, UTC-08:00)  #    Comments [6] - Trackback
 Sunday, October 04, 2009

Data center networks are nowhere close to the biggest cost or the even the most significant power consumers in a data center (Cost of Power in Large Scale Data Centers) and yet substantial networking constraints loom large just below the surface. There are many reasons why we need innovation in data center networks but let’s look at a couple I find particularly interesting and look at the solution we offered in a recent SIGCOMM paper VL2: A Scalable and Flexible Data Center Network.


Server Utilization

By far the biggest infrastructure cost in a high-scale service is the servers themselves. The first and most important optimization of server resources is to increase server utilization. The best way to achieve higher server utilization is to run the servers as large homogeneous resource pool where workloads can be run on available servers without constraint. There are (at least) two challenges with this approach: 1) most virtual machine live migration techniques only work within a subnet (a layer 2 network) and 2) compute resources that communicate frequently and in high volume need to be “near” each other.


Layer 2 networks are difficult to scale to entire data centers so all but the smallest facilities are made up of many layer 2 subnets each of what might be as small as 20 servers or as large as 500. Scaling layer 2 networks much beyond order 10^3 servers is difficult and seldom done with good results and most are in the O(10^2) range. The restriction of not being able to live migrate workloads across layer 2 boundaries is a substantial limitation on hardware resource balancing and can lead to lower server utilization. Ironically, even though networking is typically only a small portion of the overall infrastructure cost, constraints brought by networking can waste the most valuable components, the servers themselves, through poor utilization.


The second impediment to transparent workload placement – the ability to run any workload on any server is driven by the inherent asymmetry typical of data center networks. Most data center networks are seriously over-subscribed. This means there is considerably more bandwidth between servers in the same rack than between racks. And, again, there is considerable more bandwidth between racks on the same aggregation switch than between racks on different aggregation switches through the core routers.  Oversubscription levels of 80 to 1 are common and as much as 240 to 1 can easily be found.  If two servers need to communicate extensively and in volume with each other, then they need to be placed near to each other with respect to the network.  These networking limitations make workload scheduling and placement considerably more difficult and drive reduced levels of server utilization.  Networking is, in effect, “in the way” and blocking the efficient optimization of the most valuable resources in the data center. Server under-utilization wastes much of the capital spent on servers and leaves expensive power distribution and cooling resources underutilized.


Data Intensive computing

In the section above, we talked about networking over-subscription levels of 80:1 and higher being common. In the request/response workloads found in many internet services, these over-subscription levels can be tolerable and work adequately well. They are never ideal but they can be sufficient to support the workload. But, for workloads that move massive amounts of data between nodes rather than small amounts of data between the server and the user, oversubscription can be a disaster. Examples of these data intensive workloads are data analysis clusters, many high performance computing workloads, and the new poster child of this workload-type, MapReduce.  MapReduce clusters of hundreds of servers are common and there are many clusters are thousands of servers operating upon petabytes of data. It is quite common for a MapReduce job to transfer the entire multi-petabyte data set over the network during a single job run. This can tax the typically shared networking infrastructure incredibly and the network is often the limiting factor in job performance. Or, worded differently, all the servers and all the other resources in the cluster are being underutilized because of insufficient network capacity.


What Needs to Change?

Server utilization can continue to be improved without lifting the networking constraints but, when facing an over-constrained problem, it makes no sense to allow a lower cost component impose constraints on the optimization of a higher cost component. Essentially, the network is in the way. And, the same applies to data intensive computing. These workloads can be run on over-subscribed networks but they don’t run well. Any workload that is network constrained is saving money on the network at the expensive of underutilizing more valuable components such as the servers and storage.


The biggest part of the needed solution is lower cost networking gear. The reason why most data centers run highly over-subscribed networks is the expense of high-scale networking gear. Rack switches are relatively inexpensive and, as a consequence, they are seldom over-subscribed. Within the rack bandwidth is usually only limited by the server port speed. Aggregation routers connect rack switches. These implement layer 3 protocols but that’s not the most important differentiator. Many cheap top of rack switches also implement layer 3 protocols.  Aggregation switches are more expensive because they have larger memory, larger routing tables, and they support much higher port counts. Essentially they are networking equivalent of scale-up servers. And, just as with servers, scaling up networking gear drives costs exponentially. These expensive aggregation and core routers force, or strongly encourage, some degree of oversubscription in an effort to get the costs scaling closer to linearly as the network grows.


Low cost networking gear is a big part of the solution but it doesn’t address the need to scale the layer 2 network discussed above. The two approaches being looked at to solve this problem are to 1) implement a very large layer 2 network or 2) implement a layer 2 overlay network. Cisco and much of the industry is taking the approach of implementing very large layer 2 networks. Essentially changing and extending layer 2 with layer 3 functionality (see The Blurring of layer 2 and layer 3). You’ll variously see the efforts to scale layer 2 referred to as Data Center Ethernet (DCE) or IEEE Data Center Bridging (DCB).


The second approach is to leverage the industry investment in layer 3 networking protocols and implement an overlay network. This was the technique employed by Albert Greenberg and a team of researchers including myself in VL2: A Scalable and Flexible Data Center Network which was published at SIGCOMM 2009 earlier this year. The VL2 project is built using commodity 24-port, 1Gbps switch gear. Rather than using scale-up aggregation and core routers, these low cost, high-radix, commodity routers are cabled to form a Clos network that can reasonably scale to O(10^6) ports. This network topology brings many advantages including: 1) no oversubscription, 2) incredibly robust with many paths between any two ports, 3) inexpensive depending only upon high-volume, commodity components, and 4) able to support large data centers in a single, non-blocking network fabric.


The VL2 approach combines the following:

·         Overlay: VL2 is an overlay where all traffic is encapsulated at the source end point and decapsulated destination end point. VL2 separates Location Addresses (PA) from Application Addresses (AA). PAs are the standard hierarchically assigned IP addresses used in the underlying physical network fabric. AAs are the addresses used by the application and the AAs form a single, flat layer 2 address space. Virtual machines can be moved anywhere in the network and still have the same AA. To the application it looks like a single, very-large subnet but, the physical transport network is a conventional layer 3 network with hierarchically assigned IP addresses and subnets. VL2 implements a single flat address space without requiring layer 2 extensions not present in commodity routers and without requiring protocol changes in the application.

·         Central Directory: The directory implements Application Address to Location Address lookup and back in a central directory which keeps the implementation simple, avoid broadcast domain scaling issues, and supports O(10^6) port scaling.

·         Valiant Load Balancing: VLB is used to randomly spread flows over the multipath fabric. Entire flows are spread randomly rather than single packets in a fallow to ensure in-order delivery (all packets on a flow take the same path in the absence of link failure). The paper agrees that spreading packets rather than flows would yield more stable results in the presence of dissimilar flow sizes but experimental results suggest flow spreading may be an acceptable approximation.


If you are interested in digging deeper into the VL2 approach:

·         The VL2 Paper: VL2: A Scalable and Flexible Data Center Network

·         An excellent presentation both motivating and discussing VL2: Networking the Cloud


In my view, we are on the cusp of big changes in the networking world driven by the availability of high-radix, low-cost, commodity routers coupled with protocol innovations.




James Hamilton



b: /


Sunday, October 04, 2009 4:18:26 PM (Pacific Standard Time, UTC-08:00)  #    Comments [6] - Trackback
 Thursday, October 01, 2009

Microsoft’s Chicago data center was just reported to be online as of July 20th. Data Center Knowledge published an interesting and fairly detailed report in: Microsoft Unveils Its Container-Powered Cloud. 


Early industry rumors were that Rackable Systems (now SGI but mark me down as confused on how that brand change is ever going to help the company) had won the container contract for the lower floor of Chicago. It appears that the Dell Data Center Solutions team has now has the business and 10 of the containers are from DCS.


The facility is reported to be a ½ billion dollar facility of 700,000 square feet. The upper floor is a standard data center whereas the lower floor is the world’s largest containerized deployment. Each container holds 2,000 servers and ½MW of critical load. The entire lower floor when fully populated will house 112 containers and 224,000 servers.


Data Center Knowledge reports:


The raised-floor area is fed by a cooling loop filled with 47-degree chilled water, while the container area is supported by a separate chilled water loop running at 65 degrees. Of the facility’s total 30-megawatt power capacity, about 20 megawatts is dedicated to the container area, with about 10 megawatts for the raised floor pods. The power infrastructure also includes 11 power rooms and 11 diesel generators, each providing 2.8 megawatts of potential backup power that can be called upon in the event of a utility outage.


Unlike Dublin which uses a very nice air-side economization design, Chicago is all water cooled with water side economization but no free air cooling at all.


One of the challenges of container systems is container handling. These units can weight upwards of 50,000 lbs and are difficult to move and the risk of a small mistake by a crane operator is substantial not to mention the cost of gantry cranes to move them around. The Chicago facility takes a page from advanced material handling and slides the containers on air skates over the polished concrete floor. Just 4 people can move a 2 container stack into place. It’s a very nice approach.


The entire facility is reported to be 30MW total load but 112 containers would draw 56MW critical load. So we know the 30MW number is an incremental build-out point rather than the facility's fully built size. Once completed, I would estimate it will be closer to 80MW of critical load and around 110MW of total power (assuming 1.35 PUE).




James Hamilton



b: /


Thursday, October 01, 2009 6:01:09 AM (Pacific Standard Time, UTC-08:00)  #    Comments [2] - Trackback
 Sunday, September 27, 2009

I recently came across an interesting paper that is currently under review for ASPLOS. I liked it for two unrelated reasons: 1) the paper covers the Microsoft Bing Search engine architecture in more detail than I’ve seen previously released, and 2) it covers the problems with scaling workloads down to low-powered commodity cores clearly. I particularly like the combination of using important, real production workloads rather than workload models or simulations and using that base to investigate an important problem: when can we scale workloads down to low power processors and what are the limiting factors?


The paper: Web Search Using Small Cores: Quantifying the Price of Efficiency.

Low Power Project Team Site: Gargoyle: Software & Hardware for Energy Efficient Computing


I’ve been very interested in the application of commodity, low-power processors to produce service workloads for years and wrote up some of the work done during 2008 for the Conference on Innovative Data Systems Research in a paper CEMS: Low-Cost, Low-Power Servers for Internet-Scale Services and presentation. And several blog entries since that time:

This paper uses an Intel Atom as the low powered, commodity processor under investigation and compares it with Intel Harpertown. It would have been better to use Intel Nehalem as the server processor of comparison. Nehalem is a dramatic step forward in power/performance over Harpertown. But using Harpertown didn’t change any of the findings reported in the paper so it’s not a problem.


On the commodity, low-power end, Atom is a wonderful processor but current memory managers on Atom boards don’t support ECC nor greater than 4 gigabytes of memory. I would love to use Atom in server designs but all the data I’ve gathered argues strongly that no server workload should be run without ECC. Intel clearly has memory management units with the appropriate capabilities so it’s obviously not technical problems that leave Atom without ECC. The low-powered AMD part used in CEMS does include ECC as does the ARM I mentioned in the recent blog entry ARM Cortex-A9 SMP Design Announced.


Most “CPU bound” workloads are actually not CPU bound but limited by memory. The CPU will report busy but it is actually spending most of its time in memory wait states. How can you tell if your workload is actually memory bound or CPU bound?  Look at Cycles Per Instruction, the number of cycles that each instruction takes. Super scalar processors should be dispatching many instructions per cycle (CPI << 1.0) but memory wait state on most workloads tend limit CPIs to over 1.  Branch intensive workloads that touch large amounts of memory tend to have high CPI counts whereas cache resident workloads will be very low and potentially less than 1.  I’ve seen operating system code with the CPI more than 7 and I’ve seen database systems in the 2.4 range. More optimistic folks than I, tend to look at the reciprocal of CPI, instructions per cycle but it’s the same data. See my Rules of Thumb post for more discussion of CPI.


In figure 1, the paper shows the instructions per Cycle (IPC which is 1/CPI) of Apache, MySQL, JRockit, DBench, and Bing.  As I mentioned above, if you give server workloads sufficient disk and network resources, they typically become memory bound. A CPI of 2.0 or greater are typical of commercial server workloads and well over 3.0 is common. As we expected, all the public server workloads in Figure 1 are right around a CPI of 2.0 (IPC roughly equal to 0.5).  Bing is the exception with a IPC CPI of nearly 1.0. This means that Bing is almost twice as computationally intensive than typical server workloads. This is an impressively good CPI and makes this workload particularly hard to run on low-power, low-cost, commodity processors. The authors choice of this very difficult workload to study allows them to clearly see the problems of scaling down server workloads and makes the paper better. Effectively using a difficult workload draws out and make more obvious the challenges of scaling down workloads to low-power processors. We need to keep in mind that most workloads, in fact, nearly all server workloads are a factor of 2 less computationally intensive and therefore easier to host on low-powered servers.


The lessons I got from the paper are: Unsurprisingly Atom showed much better power/performance than Harpertown but offered considerably less performance head room. Conventional server processors are capable of very high-powered bursts of performance but typically operate in lower performance states. When you need to run a short computational intensive segment of code, the performance is there.  Low power processors operate in steady state nearer to their capabilities limits. The good news is they operate nearly an order of magnitude more efficiently than the high powered server processors but they don’t have the ability to deliver the computational bursts at the same throughput.


Given that low-powered processors are cheap, over-provisioning is the obvious first solution. Add more processors and run them at lower average utilization in order to have the headroom to be able to process computationally intensive code segments without slowdown. Over-provisioning helps with throughput and provides the headroom to handle computationally intensive code segments but doesn’t help with the latency problem.  More cores will help most server workloads but, on those with both very high computational intensity (CPI near 1 or lower) and needing very low latency, only fast cores can fully address the problem. Fortunately, these workloads are not the common case.


Another thing to keep in mind is, if you improve the price/performance and power/performance of processors greatly, other server components begin to dominate. I like to look at extremes to understand these factors.  What if the processor was free and consumed zero power?  The power consumption of memory and glue chips would dominate and the cost of all the other components would put a floor on the server cost. This argues for at least 4 server design principles: 1) memory is on track to be the biggest problem so we need low cost, power efficient memories, 2) very large core counts help amortize the cost of all the other server components and helps manage the peak performance problem, 3) as the cost of the server is scaled down, it makes sense to share some components such as power supplies, and 4) servers will never be fully balanced (all resources consumed equally) for all workloads so we’ll need the ability to take resources to low-power states or even to depower them.  Intel Nehalem does some of this later point and mobile phone processors like ARM are masters of it.


If you are interested in high scale search, the application of low-power commodity processors to service workloads, or both, this paper is a good read.


James Hamilton



b: /


Sunday, September 27, 2009 7:21:58 AM (Pacific Standard Time, UTC-08:00)  #    Comments [4] - Trackback
 Thursday, September 24, 2009

This is 100% the right answer: Microsoft’s Chiller-less Data Center. The Microsoft Dublin data center has three design features I love: 1) they are running evaporative cooling, 2) they are using free-air cooling (air-side economization), and 3) they run up to 95F and avoid the use of chillers entirely. All three of these techniques were covered in the best practices talk I gave at the Google Data Center Efficiency Conference  (presentation, video).


Other blog entries on high temperature data center operation:

·  Next Point of Server Differentiation: Efficiency at Very High Temperature

·  Costs of Higher Temperature Data Centers?

·  32C (90F) in the Data Center


Microsoft General Manager of Infrastructure Services Arne Josefsberg blog entry on the Dublin facility:


In a secretive industry like ours, it’s good to see a public example of a high-scale data center running hot and without chillers. Good work Microsoft.




James Hamilton



b: /


Thursday, September 24, 2009 10:37:27 AM (Pacific Standard Time, UTC-08:00)  #    Comments [2] - Trackback
 Monday, September 21, 2009

Here’s another innovative application of commodity hardware and innovative software to the high-scale storage problem. MaxiScale focuses on 1) scalable storage, 2) distributed namespace, and 3) commodity hardware.


Today's announcement:


They sell software designed to run on commodity servers with direct attached storage. They run N-way redundancy with a default of 3-way across storage servers to be able to survive disk and server failure. The storage can be accessed via HTTP or via Linux or Windows (2003 and XP) file system calls. The later approach requires a kernel installed device driver and uses a proprietary protocol to communicate back with the filer cluster but has the advantage of directly support local O/S read/write operations. MaxiScale architectural block diagram:

Overall I like the approach of using commodity systems with direct attached storage as the building block for very high scale storage clusters but that is hardly unique. Many companies have head down this path and, generally, it’s the right approach. What caught my interest when I spoke to the MaxiScale team last week was: 1) distributed metadata, 2) MapReduce support, and 3) small file support. Let’s look at each of these major features:


Distributed Metadata

File systems need to maintain a namespace. We need to maintain the directory hierarchy and we need to know where to find the storage blocks that make up the file.  In addition, other attributes and security may need to be stored depending upon the implemented file system semantics. This metadata is often stored in large key/value store. The metadata requires at least some synchronization since, for example, you don’t want to create two different objects of the same name at roughly the same time.  At high scale, storage servers will be joining and leaving the cluster all the time, so having a central metadata service is a easy approach to the problem. But, as easy as it is to implement a central metadata systems, they bring scaling limits. Eventually the metadata gets too hot and needs to be partitioned. In fairness, it’s amazing how far central metadata can be scaled but eventually hot spots develop and it needs to be partitioned. For example, Google GFS just went down this path: GFS: Evolution on Fast-forward. Partitioning metadata is a fairly well understood problem. What makes it a bit of a challenge is making the metadata system adaptive and able to re-partition when hot spots develop.


MaxiScale took an interesting approach to scaling the metadata. They distributed the metadata servers over the same servers that store the data rather than implement a cluster of dedicated metadata servers. They do this by hashing on the parent directory to find what they call a Peer Set and then, in that particular Peer Set, they look up the object name in the metadata store, find the file block location, and then apply the operation to the blocks in that same Peer Set.


Distributing the metadata over the same Peer Set as the stored data means that each peer set is independent and self-describing. The downside of having a fixed hash over the peer sets is that it’s difficult to cool down an excessively hot peer set by moving objects since the hash is known by all clients.


MapReduce Support

I love the MaxiScale approach to multi-server administration. They need to provide customers the ability to easily maintain multi-server clusters. They could have implemented a separate control plane to manage the all the servers that make up the cluster but, instead, they just use Hadoop and run MapReduce jobs.


All administrative operations are written as simple MapReduce jobs which certainly made the implementation task easier but it’s also a nice, extensible interface to allow customers to write custom administrative operations. And, since MapReduce is available over the cluster, its super easy to write data mining and data analysis jobs. Supporting MapReduce over the storage system is a nice extension of normal filer semantics.


Small File Support

The standard file system access model is to probe the metadata to get the block list and then access the blocks to perform the file operation. In the common case, this will require two I/Os which is fine for large files but the two I/Os can be expensive for small file access. And, since most filers use fixed size blocks and, for efficiency these block size tend to be larger than the average small file, some space is wasted. The common approach to this two problems is to pull small files “up” and rather than store the list of storage blocks in the file metadata, just store the small file. This works fine for small files and avoids both the block fragmentation and the multiple I/O problem on small files. This is what MaxiScale has done as well and they claim single I/O for any small file stored in the system.


More data on the MaxiScale filer: Small Files, Big Headaches: Ensuring Peak Performance


I love solutions based upon low-cost, commodity H/W and application maintained redundancy and what MaxiScale is doing has many of the features I would like to see in a remote filer.




James Hamilton



b: /



Monday, September 21, 2009 6:41:49 AM (Pacific Standard Time, UTC-08:00)  #    Comments [1] - Trackback
 Wednesday, September 16, 2009

ARM just announced a couple of 2-core SMP design based upon the Cortex-A9 application processor, one optimized for performance and the other for power consumption ( Although the optimization points are different, both are incredibly low power consumers by server standards with the performance-optimized part dissipating only 1.9W at 2Ghz based upon the TSMC 40G process (40nm). This design is aimed at server applications and should be able to run many server workloads comfortably.


In Linux/Apache on ARM Processors I described an 8 server cluster of web servers running the Marvell MV78100. These are single core ARM design servers produced by Marvell. It’s a great demonstration system showing that web server workloads can be run cost effectively on ARM based servers. Toward the end of the blog entry, I observed:


The ARM is a clear win on work done per dollar and work done per joule for some workloads. If a 4-core, cache coherent version was available with a reasonable memory controller, we would have a very nice server processor with record breaking power consumption numbers.


I got a call from ARM soon after posting saying that I may get my wish sooner than I was guessing. Very cool. The Design that was announced earlier today includes a 2-core, performance optimized design that could form the building block of a very nice server. In the following block diagram, ARM  shows a pair of 2-core macros implementing a 4-way SMP:

Some earlier multi-core ARM designs such the Marvel MV78200 are not cache coherent which makes it difficult to support a single application utilizing both cores. As long as this design is coherent (and I believe it is), I love it.  


Technically it’s long been possible to build N-way SMP servers based upon the single core Cortex-A9 macros but it’s quite a bit of design work. The 2-way single macro makes it easy to deliver at least 2-core servers and this announcement shows that ARM is interested in and is investing in developing the ARM-based server market.


The ARM reported performance results:


In the ARM business model, the release of a design is the first and most important step towards parts becoming available from partners. However, it’s typically at least 12 months from design availability to first shipping silicone from partners so we won’t likely see components based upon this design until late 2010 at the earliest. I’m looking forward to it.


Our industry just keeps getting more interesting.




James Hamilton



b: /


Wednesday, September 16, 2009 4:05:24 AM (Pacific Standard Time, UTC-08:00)  #    Comments [6] - Trackback
 Sunday, September 13, 2009

AJAX applications are wonderful because they allow richer web applications with much of the data being brought down asynchronously. The rich and responsive user interfaces of applications like Google Maps and Google Docs are excellent but JavaScript developers need to walk a fine line. The more code they download, the richer the UI they can support and the less synchronous server interactions they need. But, the more code they download, the slower the application can be to start. This is particularly noticeable when the client cache is cold and in mobile applications with restricted bandwidth back to the server.


Years ago profile directed code reorganization (a sub-class of Basic Block Transforms) were implemented to solve what might appear to be an unrelated problem. The problem tackled by these profile directed basic block reorganizations is decreasing the number of last level cache misses in a server. They do this by organizing frequently accessed code segments together and moving rarely executed code segments. The biggest gain is that seldom executed error handling code can be moved away from frequently executed application code. I’ve seen reports of error handling code making up more than 40% of an application. Moving this code away from the commonly executed mainline code allows fewer processor cache lines to support program execution which demands fewer memory faults. Error handling code will execute more slowly but that is seldom an issue. Profile directed basic block transforms need to be trained on “typical” applications workloads and code that typically executes together will be placed together. Unfortunately, “typical” is often an important, industry standard benchmark like TPC-C so sometimes “typical” is replaced by “important” :-). Nonetheless, the tools are effective and greater than 20% improvement is common and we often see much more. All commercial database servers use or misuse profile directed basic block reorganizations.


The JavaScript download problem is actually very similar to the problem addressed by basic block transforms. Getting code from the server takes relatively long time just as getting code from memory takes a long time relative to executing code already in the processor cache.  Much of the application doesn’t execute in the common case so it makes little sense to download it all unless needed in this execution. Most of the code isn’t needed to start the application so it’s a big win to download the code, start the application, and then download what is needed in the background.


Last week Ben Livshits and Emre Kiciman of the Microsoft Research team released an interesting tool that does exactly this for JavaScript applications. Doloto analyses client JavaScript systems and breaks them up into a series of independent modules. The primary module is downloaded first and includes just stubs for the other modules. This primary module is smaller, downloads faster, and dramatically improves time to live application. In the Doloto team measurements, the size of the initial download was only between 20% and 60% of the size of the standard download. In the case of Google docs, the initial download was less than 20% of the original size.

Once the initial module is downloaded, the application is live and running and the rest of the modules are brought down asynchronously or faulted in as needed. Many applications due these optimizations manually but this is a nice automated approach to the problem


I’ve seen 80,000 line JavaScript programs and there are many out there far larger. Getting the application running fast dramatically improves the user experience and this is a nice approach to achieving that goal.  Doloto is available for download at: And there is a more detailed Doloto paper at: and summary information at:   


James Hamilton



b: /


Sunday, September 13, 2009 9:03:46 AM (Pacific Standard Time, UTC-08:00)  #    Comments [0] - Trackback
 Sunday, September 06, 2009

In The Case for Low-Cost, Low-Power Servers, I made the argument that the right measures of server efficiency was work done per dollar and work done per joule. Purchasing servers on single dimensional metrics like performance or power or even cost alone, makes no sense at all. Single dimensional purchasing leads to micro-optimizations that push one dimension to the detriment of others. Blade servers have been one of my favorite examples of optimizing the wrong metric (Why Blade Servers aren’t the Answer to All Questions). Blades often trade increased cost to achieve server density. But density doesn’t improve work done per dollar nor does it produce better work done per joule. In fact, density often takes work done per joule in the wrong direction by driving higher power consumption due to the challenge of cooling higher power densities.


There is no question that selling in high volume drives price reductions so client and embedded parts have the potential to be the best price/performing components.  And, as focused as the server industry has been on power of late, the best work is still in the embedded systems world where a cell phone designer would sell their souls for a few more amp-hours if they could have it without extra size or extra-weight.  Nobody focuses on power as much as embedded systems designers and many of the tricks arriving in the server world showed up years ago in embedded devices.  


A very common processor used in cell phone applications is the ARM. The ARM business is model is somewhat unusual in that they sells a processor design and then the design is taken and customized by many teams including Texas Instruments, Samsung, and Marvel. These processors find their way into cell phones, printers, networking gear, low-end Storage Area Networks, Network Attached Storage devices, and other embedded applications. The processors produce respectable performance and great price/performance and absolutely amazing power/performance.


Could this processor architecture be used in server applications? The first and most obvious push back is that it’s a different instruction set architecture but servers software stacks really are not that complex.  If you can run Linux and Apache some web workloads can be hosted. There are many Linux ports to ARM -- the software will run. The next challenge, and this one is the hard one, does the workload partition into sufficiently fine slices to be hosted on servers built using low end processors. Memory size limitations are particularly hard to work around in that ARM designs have the entire system on the chip including the memory controller and none I’ve seen address more than 2GB. But, for those workloads that do scale sufficiently finely, ARM can work.


I’ve been interested in seeing this done for a couple of years and have been watching ARM processors scale up for quite some time. Well, we now have an example. Check out That web site is hosted on 7 servers, each running the following:

·         Single 1.2Ghz ARM processor, Marvell MV78100

·         1 disk

·         1.5 GB DDR2 with ECC!

·         Debian Linux

·         Nginx web proxy/load balancer

·         Apache web server


Note that, unlike Intel Atom based servers, this ARM-based solution has the full ECC memory support we want in server applications (actually you really want ECC in all applications from embedded through client to servers).


Clearly this solution won’t run many server workloads but it’s a step in the right direction. The problems I have had when scaling systems down to embedded processors have been dominated by two issues: 1) some workloads don’t scale down to sufficiently small slices (what I like to call bad software but, as someone who spent much of his career working on database engines, I probably should know better), and 2) surrounding component and packaging overhead. Basically, as you scale down the processor expense, other server costs begin to dominate. For example, If you half the processor cost and also ½ the throughput, its potentially a step backwards since all the other components in the server didn’t also half in cost. So, in this example, you would get ½ the throughput with something more than ½ the cost. Generally not good. But, what’s interesting are those cases where it’s non-linear in the other direction. Cut the cost to N% with throughput at M% where M is much more than N. As these system on a chip (SOC) server solutions improve, this is going to be more common.


It’s not always a win based upon the discussion above but it is a win for some workloads today. And, if we can get multi-core versions of ARM, it’ll be a clear win for many more workloads. Actually, the Marvel MV78200 actually is a two core SOC but it’s not cache coherent which isn’t a useful configuration in most server applications. 


The ARM is a clear win on work done per dollar and work done per joule for some workloads. If a 4-core, cache coherent version was available with a reasonable memory controller, we would have a very nice server processor with record breaking power consumption numbers. Thanks for the great work ARM and Marvel. I’m looking forward to tracking this work closely and I love the direction its taking. Keep pushing.




James Hamilton



b: /


Sunday, September 06, 2009 4:19:41 PM (Pacific Standard Time, UTC-08:00)  #    Comments [0] - Trackback
 Thursday, September 03, 2009

The server tax is what I call the mark-up applied to servers, enterprise storage, and high scale networking gear.  Client equipment is sold in much higher volumes with more competition and, as a consequence, is priced far more competitively. Server gear, even when using many of the same components as client systems, comes at a significantly higher price. Volumes are lower, competition is less, and there are often many lock-in features that help maintain the server tax.  For example, server memory subsystems support Error Correcting Code (ECC) whereas most client systems do not. Ironically both are subject to many of the same memory faults and the cost of data corruption in a client before the data is sent to a server isn’t obviously less than the cost of that same data element being corrupted on the server. Nonetheless, server components typically have ECC while commodity client systems usually do not. 


Back in 1987 Garth Gibson, Dave Patterson, and Randy Katz invented Redundant Array of Inexpensive Disks (RAID). Their key observation was that commodity disks in aggregate could be more reliable than very large, enterprise class proprietary disks. Essentially they showed that you didn’t have to pay the server tax to achieve very reliable storage. Over the years, the “inexpensive” component of RAID was rewritten by creative marketing teams as “independent” and high scale RAID arrays are back to being incredibly expensive. Large Storage Area Networks (SANs) are essentially RAID arrays of “enterprise” class disk, lots of CPU and huge amounts of cache memory with a fiber channel attach. The enterprise tax is back with a vengeance and an EMC NS-960 prices in at $2,800 a terabyte.


BackBlaze, a client compute backup company, just took another very innovative swipe at destroying the server tax on storage.  Their work shows how to bring the “inexpensive” back to RAID storage arrays and delivers storage at $81/TB. Many services are building secret, storage subsystems that deliver super reliable storage at very low cost.  What makes the BackBlaze work unique is they have published the details on how they built the equipment. It’s really very nice engineering.


In Petabytes on a budget: How to Build Cheap Cloud Storage they outline the details of the storage pod:

·         1 storage pod per 4U of standard rack space

·         1 $365 mother board and 4GB of ram per storage pod

·         2 non-redundant Power Supplies

·         4 SATA cards

·         Case with 6 fans

·         Boot drive

·         9 backplane multipliers

·         45 1.5 TB commodity hard drives at $120 each.


Each storage pod runs Apache TomCat 5.5 on Debian Linux and implements 3 RAID6 volumes of 15 drives each.  They provide a hardware full bill of materials in Appendix A of Petabytes on a budget: How to Build Cheap Cloud Storage.


Predictably some have criticized the design as inappropriate for many workloads and they are right. The I/O bandwidth is low so this storage pod would be a poor choice for data intensive applications like OLTP databases. But, it’s amazingly good for cold storage like the BackBlaze backup application. Some folks have pointed out that the power supplies are very inefficient at around 80% peak efficiency and the configuration chosen will have them far below peak efficiency. True again but it wouldn’t be hard to replace these two PSUs with a single, 90+% efficiency, commodity unit. Many are concerned with cooling and vibration. I doubt cooling is an issue and, in the blog posting, they addressed the vibration issue and talked briefly about how they isolated the drives. The technique they chose might not be adequate for high IOPS arrays but it seems to be working for their workload. Some are concerned by the lack of serviceability in that the drives are not hot swappable and the entire 67TB storage pod has to be brought offline to do drive replacements. Again, this concern is legitimate but I’m actually not a big fan of hot swapping drives – I always recommend bringing down a storage server before service (I hate risk and complexity). And, I hate paying for hot swamp gear and there isn’t space for hot swap in very high density designs.  Personally, I’m fine with a “shut-down to service” model but others will disagree.


The authors compared their hardware storage costs to a wide array of storage sub-systems from EMC through Sun and Netapp. They also compared to Amazon S3 and made what is a fairly unusual mistake for a service provider. They compared on-premise storage equipment purchase cost (just the hardware) with a general storage service. The storage pod costs include only hardware while the S3 costs include data center rack space, power for the array, cooling, administration, inside the data center networking gear, multi-data center redundancy, a general I/O path rather than one only appropriate for cold storage, and all the software to support a highly reliable, geo-redundant storage service. So I’ll quibble on their benchmarking skills – the comparison is of no value as currently written -- but, on the hardware front, it’s very nice work.


Good engineering and a very cool contribution to the industry to publish the design. One more powerful tool to challenge the server tax. Well done Backblaze.


VentureBeat article:


James Hamilton, Amazon Web Services

1200, 12th Ave. S., Seattle, WA, 98144
W:+1(425)703-9972 | C:+1(206)910-4692 | H:+1(206)201-1859 | |  | blog:


Thursday, September 03, 2009 8:13:05 AM (Pacific Standard Time, UTC-08:00)  #    Comments [11] - Trackback
 Friday, August 28, 2009

We’re back from China last Saturday night and, predictably, I’m swamped catching up on three weeks worth of queued work.  The trip was wonderful (China Trip) but it’s actually good to be back at work. Things are changing incredibly quickly industry-wide and it’s a fun time to be part of AWS.


An AWS feature I’ve been looking particularly looking forward to seeing announced is Virtual Private Cloud (VPC). It went into private beta two nights back. VPC allows customers to extend their private networks to the cloud through a virtual private network (VPN) to access their Amazon Web Service Elastic Compute Cloud (EC2) instances with the security they are used to having on their corporate networks. This one is a game changer. 


Virtual Private Cloud news coverage:


Werner Vogels on VPC: Seamlessly Extending the Data Center – Introducing Amazon Virtual Private Cloud.


With VPC, customers can have applications running on EC2 “on” their private corporate networks and accessible only from their corporate networks just like any other locally hosted application.  This is important because it makes it easier to put enterprise applications in the cloud and support the same access right and restrictions that customers are used to enforcing on locally hosted resources. Applications can more easily move between private, enterprise data centers and the cloud and hybrid deployments are easier to create and more transparent.




James Hamilton, Amazon Web Services

1200, 12th Ave. S., Seattle, WA, 98144
W:+1(425)703-9972 | C:+1(206)910-4692 | H:+1(206)201-1859 | |  | blog:


Friday, August 28, 2009 7:07:48 AM (Pacific Standard Time, UTC-08:00)  #    Comments [5] - Trackback
 Saturday, August 01, 2009

I’ll be taking a brief hiatus from blogging during the first three weeks of August. Tomorrow we leave for China. You might wonder why we would go to China during the hottest time of the year. For example, our first stop, Xiamen, is expected to hit 95F today, which is fairly typical weather for this time of year (actually its comparable to the unusual weather we’ve been having in Seattle over the last week). The timing of the trip is driven by a boat we’re buying nearing completion in a Xiamen China boat yard: Boat Progress. The goal is to see the boat roughly 90% complete so we can catch any issues early and get them fixed before the boat leaves the yard. And, part of the adventure of building a boat, is to get a chance to visit the yard and see how they are built.


We love boating but, having software jobs, we end up working a lot. Consequently, the time we do get off, we spend boating between Olympia, Washington and Alaska. Since we seldom have the time for non-boat related travel, we figured we should take advantage of visiting China and see more than just the boat yard. 


After the stop at the boat yard in Xiamen, we’ll visit Hong Kong, Guilin, Yangshou, Chengdu, and do a cruise of the Yangtze River and then travel to Xian followed by Beijing before returning home.  




James Hamilton, Amazon Web Services

1200, 12th Ave. S., Seattle, WA, 98144
W:+1(425)703-9972 | C:+1(206)910-4692 | H:+1(206)201-1859 | |  | blog:


Saturday, August 01, 2009 3:26:27 PM (Pacific Standard Time, UTC-08:00)  #    Comments [8] - Trackback
 Wednesday, July 29, 2009

Search is a market driven by massive networking effects and economies of scale. The big get better, the big get cheaper, and the big just keep getting bigger. Google has 65% of the Search market and continues to grow. In a deal announced yesterday, Microsoft will supply search to Yahoo and now has a combined share of 28%. For the first time ever, Microsoft has enough market share to justify continuing large investments. And, more importantly, they now have enough market to get good data on usage to tune the ranking engine to drive better quality search. And, although Microsoft and Yahoo! will continue to have separate advertising engines and separate sales forces, they will have more user data available to drive the analytics behind their advertising businesses.  The Search world just got more interesting.


The market will continue to unequally reward the big player if nothing else changes. Equal focus of skill and investment will continue to yield unequal results. But, at 28% rather than 8%, its actually possible to gain share and grow even with the negative network effects and economies of scale.  This is good for the Search market, good for the Microsoft Search team, and good for users.


NY Times:





James Hamilton, Amazon Web Services

1200, 12th Ave. S., Seattle, WA, 98144
W:+1(425)703-9972 | C:+1(206)910-4692 | H:+1(206)201-1859 | |  | blog:


Wednesday, July 29, 2009 4:55:40 AM (Pacific Standard Time, UTC-08:00)  #    Comments [2] - Trackback
 Saturday, July 25, 2009

MapReduce has created some excitement in the relational database community. Dave Dewitt and Michael Stonebraker’s MapReduce: A Major Step Backwards is perhaps the best example.  In that posting they argued that map reduce is a poor structured storage technology, the execution engine doesn’t include many of the advances found in modern, parallel RDBMS execution engines, it’s not novel, and its missing features.


In Mapreduce: A Minor Step Forward I argued that MapReduce is an execution model rather than storage engine. It is true that it is typically run over a file system like GFS or HDFS or simple structured storage system like BigTable or Hbase. But, it could be run over a full relational database.


Why would we want to run Hadoop over a full relational database?  Hadoop scales: Hadoop has been scaled to 4,000 nodes at Yahoo! Scaling Hadoop to 4000 nodes at Yahoo!.  Scaling a clustered RDBMS too 4k nodes is certainly possible but the high scale single system image cluster I’ve seen was 512 nodes (what was then called DB2 Parallel Edition). Getting to 4k is big.  Hadoop is simple: automatic parallelism has been an industry goal for decades but progress has been limited. There really hasn’t been success in allowing programmers of average skill to write massively parallel programs except for SQL and Hadoop. Programmers of bounded skill can easily write SQL that will be run in parallel over high scale clusters. Hadoop is the only other example I know where this is possible and happening regularily. 


Hadoop makes the application of 100s or even 1000s of nodes of commodity computers easy  so why not Hadoop over full RDBMS nodes?  Daniel Abadi and team from Yale and Brown have done exactly that.  In this case, Hadoop over PostgresSQL. From Daniel’s blog:


HadoopDB is:

1.       A hybrid of DBMS and MapReduce technologies targeting analytical query workloads

2.       Designed to run on a shared-nothing cluster of commodity machines, or in the cloud

3.       An attempt to fill the gap in the market for a free and open source parallel DBMS

4.       Much more scalable than currently available parallel database systems and DBMS/MapReduce hybrid systems (see longer blog post).

5.       As scalable as Hadoop, while achieving superior performance on structured data analysis workloads

See: for more detail and for source code for HadoopDB.


A more detailed paper has been accepted for publication at VLDB:


The development work for HadoopDB was done using AWS Elastic Compute Cluster. Nice work Daniel.




James Hamilton, Amazon Web Services

1200, 12th Ave. S., Seattle, WA, 98144
W:+1(425)703-9972 | C:+1(206)910-4692 | H:+1(206)201-1859 | |  | blog:


Saturday, July 25, 2009 9:59:47 AM (Pacific Standard Time, UTC-08:00)  #    Comments [5] - Trackback
Services | Software
 Saturday, July 18, 2009

I presented Where does the Power Go in High Scale Data Centers the opening keynote at SIGMETRICS/Performance 2009 last month. The video of the talk was just posted: SIGMETRICS 2009 Keynote.


The talk starts after the conference kick-off at 12:20. The video appears to be incompatible with at least some versions of Firefox. I was only able to stay for the morning of the conference but I met lots of interesting people and got to catch up with some old friends. Thanks to Albert Greenberg and John Douceur for inviting me.


I also did the keynote talk at this year’s USENIX Technical Conference 2009 in San Diego. Man, I love San Diego and USENIX was, as usual, excellent. I particularly enjoyed discussions with the Research in Motion team from Waterloo and the Netflix folks. Both are running high-quality, super-high growth services with lots of innovation. Thanks to Alec Wolman for inviting me down to this years USENIX conference.




James Hamilton, Amazon Web Services

1200, 12th Ave. S., Seattle, WA, 98144
W:+1(425)703-9972 | C:+1(206)910-4692 | H:+1(206)201-1859 | |  | blog:


Saturday, July 18, 2009 6:02:13 AM (Pacific Standard Time, UTC-08:00)  #    Comments [1] - Trackback
 Saturday, July 11, 2009

I’m a boater and I view reading about boating accidents as important. The best source that I’ve come across is the UKs Marine Accident Investigation Branch (MAIB). I’m an engineer and again, I view it as important to read about engineering failures and disasters. One of the best sources I know of is Peter G. Neumann’s RISKS Digest.


There is no question that firsthand experience is a powerful teacher but few of us have time (or enough lives) to make every possible mistake. There are just too many ways to screw-up. Clearly, it’s worth learning from others when trying to make our own systems more safe or more reliable. On that belief I’m a avid reader of service post mortems. I love understanding what went wrong, thinking of those same issues could impact a service in which I’m involved, and what should be done to avoid the class of problems under discussion. Some of what I’ve learned around services over the years is written up in this best practices document: originally published at USENIX LISA.


One post mortem I came across recently and enjoyed was: Message from discussion Information Regarding 2 July 2009 outage. I liked it because there was enough detail to educate and it presented many lessons. If you own or operate a service or mission critical application, it’s worth a read.




James Hamilton, Amazon Web Services

1200, 12th Ave. S., Seattle, WA, 98144
W:+1(425)703-9972 | C:+1(206)910-4692 | H:+1(206)201-1859 | |  | blog:


Saturday, July 11, 2009 8:15:09 AM (Pacific Standard Time, UTC-08:00)  #    Comments [2] - Trackback
 Friday, July 10, 2009

There have been many reports of the Fisher Plaza data center fire. An early one was the Data Center Knowledge article: Major Outage at Seattle Data Center. Data center fires aren’t as rare as any of us would like but this one is a bit unusual in that fires normally happen in the electrical equipment or switchgear whereas this one appears to have been a bus duct fire. The bus duct fire triggered the sprinkler system. Several sprinkler heads were triggered and considerable water was sprayed making it more difficult to get the facility back online quickly.


Several good pictures showing the fire damage were recently published in Tech Flash Photos: Inside the Fisher Fire.




James Hamilton, Amazon Web Services

1200, 12th Ave. S., Seattle, WA, 98144
W:+1(425)703-9972 | C:+1(206)910-4692 | H:+1(206)201-1859 | |  | blog:


Friday, July 10, 2009 5:08:58 AM (Pacific Standard Time, UTC-08:00)  #    Comments [1] - Trackback
 Thursday, July 09, 2009

MIT’s Barbara Liskov was awarded the 2008 Association of Computing Machinery Turing Award.  The Turning award is the highest distinction in computer science and is often referred to as the Nobel price of computing. Past award winners are listed at:

The full award citation:

Barbara Liskov has led important developments in computing by creating and implementing programming languages, operating systems, and innovative systems designs that have advanced the state of the art of data abstraction, modularity, fault tolerance, persistence, and distributed computing systems.

The Venus operating system was an early example of principled operating system design. The CLU programming language was one of the earliest and most complete programming languages based on modules formed from abstract data types and incorporating unique intertwining of both early and late binding mechanisms. ARGUS extended many of the CLU ideas to distributed programming, and incorporated the first versions of nested transactions to maintain predictable consistencies. Other advances include solutions elegantly combining theory and pragmatics in the areas of decentralized information flow, replicated storage and caching of persistent objects, and modular upgrading of distributed systems. Her contributions have been incorporated into the practice of programming, thereby influencing many of the most important systems used today: for programming, specification, systems design, and distributed architectures.



The cover article in the July Communications of the ACM was on the award:


James Hamilton, Amazon Web Services

1200, 12th Ave. S., Seattle, WA, 98144
W:+1(425)703-9972 | C:+1(206)910-4692 | H:+1(206)201-1859 | |  | blog:


Thursday, July 09, 2009 8:43:43 AM (Pacific Standard Time, UTC-08:00)  #    Comments [0] - Trackback

Disclaimer: The opinions expressed here are my own and do not necessarily represent those of current or past employers.

<October 2009>

This Blog
Member Login
All Content © 2015, James Hamilton
Theme created by Christoph De Baene / Modified 2007.10.28 by James Hamilton