
Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

pt

Slide subtitle

pt

Text

pt

5

pt

1

Slide title

In CAPITALS

50 pt

Slide subtitle

32 pt

Erlang

Productivity and Performance

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

2

My Perspective

 Using Erlang for 3+ years on industrial projects

 Amazon for 5 years
– working on tier-1 stateful distributed systems

 Valve LLC for 3 years
– did most of the core backend for www.steampowered.com

(~20 million registered users, 1.88 million concurrent users)

– in C++, which drove me to look for Erlang

 Before that: designed/wrote video-games

http://www.steampowered.com/

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

pt

Slide subtitle

pt

Text

pt

5

pt

3

Overview

 Introduction To Erlang

 Productivity

 Performance

 Erlang on Multi-Core

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

4

Introduction To Erlang

 Motivation

 The Big Idea

 Primary Mechanisms

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

pt

Slide subtitle

pt

Text

pt

5

pt

5

Motivation for Erlang

 Make it easier to build extremely robust, high-end

telecoms switches

 Biggest availability issue is software defects

 Biggest productivity issue is complexity of concurrent

interactions
– large nested state machines

– usual distributed-system issues

(e.g. power-set of partial-failure modes)

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

6

6

Nine-9‟s

Availability

=

31 milliseconds

downtime per year

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

pt

Slide subtitle

pt

Text

pt

5

pt

7

The Big Idea

A New Internal Architecture

 Applications composed of isolated, loosely-coupled micro-
services, communicating via asynchronous message-passing

 Fault-tolerance via “supervisors”:
– micro-services that monitor and restart other micro-services
– hierarchical escalating restart (recovery-oriented computing)

 Micro-services and message-passing should be so cheap that
they become the default abstraction

– thousands of „active objects‟ / „actors‟

 Linear control-flow, even when doing IO in thousands of processes
– VM implements scheduler, hides details of async. IO

 Avoid features that break robustness and distribution
– mutable memory-shared state, conventional mutexes,

synchronous interaction between processes

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

8

Primary Mechanisms

 Many isolated „erlang processes‟
– one-to-one concurrency with problem domain
– reasonable to have hundreds-of-thousands of processes
– VM is a single OS process, perhaps one OS thread per core

 Processes are kill-safe and crash-safe
– fail-fast error handling

 Processes can monitor each other and receive an
asynchronous signal or a message when another process
exits

 Each process has a private mailbox
– message-delivery does not interrupt receiver process
– default FIFO ordering
– can „selectively receive‟ (consume out of order) via pattern-

matching

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

pt

Slide subtitle

pt

Text

pt

5

pt

9

Language Overview

 Syntax inspired by prolog
– but different semantics (simple linear control-flow)

 Pervasive pattern-matching

 Small set of types; atom, number, list, tuple, binary, closure

 Strong, dynamic (runtime) type-checking

 No explicit pointers/references

 Immutable data values, possibly sharing internal structure
– pure-functional algorithms required for data-structures

 Bind-once variables (via pattern-matching)
– no assignment operator

 No conventional OO support
– but processes are „true‟ objects (see Alan Kay‟s OOPSLA 97 keynote)

 Constant-space tail-calls
– Looping done with recursion or high-order functions, as in Scheme

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

10

Language Overview continued

 „Mutable state‟ provided by subsystems with „service API‟
– copy data on both read and write
– ETS, Mnesia, Berkeley DB, …

 Sophisticated runtime tracing features

 Live code loading/replacement

 Some cruft
– broken lexical scope
– flat module namespace
– relatively poor/expensive string handling
– rather ad-hoc libraries
– awkward conditional control-flow (if/case)
– performance issues (see later)

 Open-source, superbly maintained by Ericsson
– no external committer rights

 Other flavors
– LFE (Lisp Flavored Erlang)
– Reia (“script language”, allows rebinding of variables)

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

pt

Slide subtitle

pt

Text

pt

5

pt

11

Quick Overview of Erlang Syntax

-module(math).

-export([fac/1]).

fac(N) when N > 0 -> N * fac(N-1);

fac(0) -> 1.

> math:fac(25).

15511210043330985984000000

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

12

Append

% append([1,2,3], [4,5]) = [1,2,3,4,5]

%

% Same as List1 ++ List2

% (copies List1, shares structure with List2)

append([H | T], List2) ->

[H | append(T, List2)];

append([], List2) ->

List2.

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

pt

Slide subtitle

pt

Text

pt

5

pt

13

Binary Search Tree

% A node is {Key, Value, LeftSubtree, RightSubtree}

% or nil

lookup(Key, {Key, Val, _, _}) ->

{ok, Val};

lookup(Key, {NodeKey, Val, L, R}) when Key < NodeKey ->

lookup(Key, L);

lookup(Key, {NodeKey, Val, L, R}) ->

lookup(Key, R);

lookup(Key, nil) ->

not_found.

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

14

High-Order Functions / Closures

> Adder = fun(Increment) ->
fun(N) -> N + Increment end

end.

#Fun

> G = Adder(10).

#Fun

> G(7).

17

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

pt

Slide subtitle

pt

Text

pt

5

pt

15

Concurrency

% Create a process

Pid = spawn(fun() ->

do(),

things()

end).

% Send a message to a process

Pid ! {my_msg, With, [“Arbitrary”, Structure]}.

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

16

Selectively receive a message

% All receive-patterns are tested against first message

% in mailbox, then against second message, and so on.

receive

{my_msg, _, [FirstElem, _]} ->

% some actions (presumably using FirstElem);
… snip any number of patterns/actions …

AnyMsg ->

% more actions

after

TimeoutMillisecs ->

% … actions

end.

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

pt

Slide subtitle

pt

Text

pt

5

pt

17

Create and monitor a process

% Choose to convert async. „exit‟ signals to messages
% (only supervisors/coordinators should do this)

process_flag(trap_exit, true),

% „links‟ are bi-directional
% (there is a uni-directional variant)

Pid = spawn_link(fun() -> ... end),

receive
{‟EXIT‟, Pid, Reason} ->

% actions ...
end

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

18

“Behaviors”

 Remove the boilerplate from common patterns

 gen_server basic micro-service

 gen_event simple publish/subscribe

 gen_fsm convenient state machines

 supervisor monitor and restart other processes

 gen_leader process pool with leader election

 plain_fsm allows nested state machines

 Good overview doc. : OTP Design Principles

http://www.cs.chalmers.se/~hanssv/leader_election/
http://erlang.org/pipermail/erlang-questions/2004-February/011403.html
http://www.eros-os.org/pipermail/e-lang/2006-June/011325.html
http://www.erlang.org/doc/design_principles/part_frame.html

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

pt

Slide subtitle

pt

Text

pt

5

pt

19

Other Patterns

 GProc : Extended Process Registry
– “find the right process”

– indexed meta-data for processes, with automatic cleanup

– „references/pointers‟ in a loosely-coupled world

 Other Ulf Wiger code

 ERESYE Erlang Expert System Engine and Linda-style

tuple-space

 Erlang Questions mailing list archives

http://svn.ulf.wiger.net/gproc/
http://ulf.wiger.net/weblog/my-erlang-projects/
http://www.erlang-consulting.com/erlangworkshop05/ERESYE_Paper.pdf
Copy (2) of Erlang Productivity and Performance.ppt

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

20

Slide title

In CAPITALS

50 pt

Slide subtitle

32 pt

Productivity

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

pt

Slide subtitle

pt

Text

pt

5

pt

21

Productivity

For which problem-domain?

 Erlang is excellent for industrial-scale systems with
certain goals

– Fault-tolerant

– Soft real-time

– Highly concurrent

– Distributed (from wire-level protocols to high-level
choreography)

 Currently poor for
– Intensive numerical computation

– Mutation-heavy computation

– Most micro-benchmarks

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

22

Dimensions of Productivity

 Expressivity of syntax

 Expressivity of abstractions

 Convenience of error-handling, resource management

 Breadth and quality of library support

 Ease of interfacing to libraries in other languages

 Reliability, maturity

 Support for debugging

 Support for maintenance of existing code/systems

 Support for operations of running systems

 Performance (how much optimization is required?)

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

pt

Slide subtitle

pt

Text

pt

5

pt

23

Dimensions of Productivity

 Expressivity of syntax
– pattern-matching is great
– „bit-syntax‟ and „binaries‟ are great for implementing low-level

protocols

 Expressivity of abstractions
– processes, message-passing, links are a huge win
– can directly model the concurrency of the problem-domain
– avoids „gimbal lock‟ of conventional shared-memory

concurrency

 Convenience of error-handling, resource management
– Good exception support (try/catch/after)
– BUT hard-killing a process bypasses any catch/after clauses

 other processes should monitor and do clean-up
– Any „ports‟ owned by the process (e.g. sockets, files) are

always closed when it exits
 mechanism is painful to customize - requires C code

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

24

Dimensions of Productivity cont.

 Breadth and quality of libraries
– good for telecoms, otherwise relatively ad-hoc / poor. Improving

slowly.

 Ease of interfacing to libraries in other languages
– somewhat painful painful
– philosophy is good: treat all external entities as processes;

send/receive messages and assume they may crash
– have to wrap APIs in message-passing interface

 Reliability/maturity
– world class

 Support for debugging
– excellent : trace facilities, remote shells, visibility tools

 Support for maintenance of existing code/systems
– excellent : hot code-loading, clean concentration of state for „upgrade‟

 Support for operations of running systems
– excellent : remote shells, visibility tools

 Performance (how much optimization is required?)

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

pt

Slide subtitle

pt

Text

pt

5

pt

25

More Information

 "Four-fold increase in productivity and quality" (2001) http://citeseer.ist.psu.edu/wiger01fourfold.html

 “Concurrency Oriented Programming In Erlang”
http://www.sics.se/~joe/talks/ll2_2002.pdf

 “Erlang Rationale” http://www.trapexit.org/forum/viewtopic.php?p=44172

 "History of Erlang"
http://www.cs.chalmers.se/Cs/Grundutb/Kurser/ppxt/HT2007/general/languages/armstrong-
erlang_history.pdf

 "World-class product certification using Erlang" (2002)
http://citeseer.ist.psu.edu/old/wiger02worldclass.html

 "Troubleshooting a large Erlang system" (2004)
http://www.erlang.se/workshop/2004/cronqvist.pdf

 "Verification of Distributed Erlang Programs using Testing, Model Checking and Theorem Proving“
http://www.cs.chalmers.se/~hanssv/doc/PhDThesis.pdf

 "AXD 301 A new generation ATM switching system" (1998)
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.5674

http://citeseer.ist.psu.edu/wiger01fourfold.html
http://www.sics.se/~joe/talks/ll2_2002.pdf
http://www.trapexit.org/forum/viewtopic.php?p=44172
http://www.cs.chalmers.se/Cs/Grundutb/Kurser/ppxt/HT2007/general/languages/armstrong-erlang_history.pdf
http://www.cs.chalmers.se/Cs/Grundutb/Kurser/ppxt/HT2007/general/languages/armstrong-erlang_history.pdf
http://www.cs.chalmers.se/Cs/Grundutb/Kurser/ppxt/HT2007/general/languages/armstrong-erlang_history.pdf
http://citeseer.ist.psu.edu/old/wiger02worldclass.html
http://www.erlang.se/workshop/2004/cronqvist.pdf
http://www.cs.chalmers.se/~hanssv/doc/PhDThesis.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.5674

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

26

Slide title

In CAPITALS

pt

Slide subtitle

pt

Performance

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

27

Current Performance Issues

 Dynamic (runtime) type checking

 Immutable data-values
– O(1) factors become O(lg N) and generate garbage

 “Public” mutable state is copied on both read and write
– and any sharing of sub-structure is lost

 Byte-code based VM, relatively few compiler
optimizations

– constant factors are relatively high compared to C, Java

– native-code compiler improves things but is rarely used

 Copy on send, and any sharing of sub-structure is lost

 “Message-passing API” to third-party low-level libraries,
may incur marshalling / copying

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

28

Performance Strengths

 Garbage-collection is per-process (and generational)
– root-set and live-set are usually tiny

– likely to be fine-grain, non-blocking

 Transient processes with pre-sized heaps can often

avoid g.c. entirely

 Large binary data is reference-counted

 ETS is not scanned by garbage collector at all

 See Erlang Efficiency Guide

http://erlang.org/doc/efficiency_guide/part_frame.html

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

29

Slide title

In CAPITALS

50 pt

Slide subtitle

32 pt

Support Material

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

30

Industry Case Study

A research team worked with Motorola Telecoms to re-

implement two existing C++ components of a

production mobile-phone system in pure Erlang, and a

mixture of Erlang/C.

http://www.erlang.se/euc/06/proceedings/1600Nystrom.ppt

http://www.erlang.se/euc/06/proceedings/1600Nystrom.ppt

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

pt

Slide subtitle

pt

Text

pt

5

pt

31

Erlang vs C++

Motorola Telecoms
 Code size:

1. Erlang version 1/7 the size of the C++ original (398 lines vs. 3101),
2. Erlang version 1/3 the size of the C++ original (4,882 lines vs.

14,900)

 Throughput
– Erlang version 2x throughput of the existing C++ version

(before QoS started to degrade in both versions)

 Latency
– Erlang version 3x faster (roundtrip times) than the C++ version

 Availability
– Erlang version available throughout repeated induced hardware

failures
– No data for C++ version

 Resilience
– Erlang version never failed even at overload of 25,000 requests per

second.
– C++ version failed before reaching 1,000 requests per second.

Top right

corner for

field

customer or

partner logotypes.

See Best practice

for example.

Slide title

40 pt

Slide subtitle

24 pt

Text

24 pt

5

20 pt

32

Reslience

0

200

400

600

800

1000

1200

24
0

31
0

48
0

94
0

14
00

19
00

47
00

94
00

16
00

0

25
00

0
48

0
31

0
24

0

Erlang A C++ A Pure Erlang A

0

200

400

600

800

1000

1200

24
0

31
0

48
0

94
0

14
00

19
00

47
00

94
00

16
00

0

25
00

0
48

0
31

0
24

0

Erlang A C++ A Pure Erlang A

X axis is load (queries per second)

Y axis is throughput (queries per second)

