Microsoft’s Chicago data center was just reported to be online as of July 20th. Data Center Knowledge published an interesting and fairly detailed report in: Microsoft Unveils Its Container-Powered Cloud.

Early industry rumors were that Rackable Systems (now SGI but mark me down as confused on how that brand change is ever going to help the company) had won the container contract for the lower floor of Chicago. It appears that the Dell Data Center Solutions team has now has the business and 10 of the containers are from DCS.

The facility is reported to be a ½ billion dollar facility of 700,000 square feet. The upper floor is a standard data center whereas the lower floor is the world’s largest containerized deployment. Each container holds 2,000 servers and ½MW of critical load. The entire lower floor when fully populated will house 112 containers and 224,000 servers.

Data Center Knowledge reports:

The raised-floor area is fed by a cooling loop filled with 47-degree chilled water, while the container area is supported by a separate chilled water loop running at 65 degrees. Of the facility’s total 30-megawatt power capacity, about 20 megawatts is dedicated to the container area, with about 10 megawatts for the raised floor pods. The power infrastructure also includes 11 power rooms and 11 diesel generators, each providing 2.8 megawatts of potential backup power that can be called upon in the event of a utility outage.

Unlike Dublin which uses a very nice air-side economization design, Chicago is all water cooled with water side economization but no free air cooling at all.

One of the challenges of container systems is container handling. These units can weight upwards of 50,000 lbs and are difficult to move and the risk of a small mistake by a crane operator is substantial not to mention the cost of gantry cranes to move them around. The Chicago facility takes a page from advanced material handling and slides the containers on air skates over the polished concrete floor. Just 4 people can move a 2 container stack into place. It’s a very nice approach.

The entire facility is reported to be 30MW total load but 112 containers would draw 56MW critical load. So we know the 30MW number is an incremental build-out point rather than the facility’s fully built size. Once completed, I would estimate it will be closer to 80MW of critical load and around 110MW of total power (assuming 1.35 PUE).


James Hamilton



b: /